Penjelasan dengan langkah-langkah:
integral tak tentu
[tex] \int {mx}^{n} \to \: \frac{ {mx}^{n + 1} }{n + 1} + C \\ [/tex]
maka:
[tex] \int(3 {x}^{ 3} - 2 {x}^{2} + 5x) \: dx \\ \frac{3 {x}^{3 + 1} }{3 + 1} - \frac{2 {x}^{2 + 1} }{2 + 1} + \frac{5 {x}^{1 + 1} }{1 + 1} + C \\ \frac{3 {x}^{4} }{4} - \frac{2 {x}^{3} }{3} + \frac{5 {x}^{2} }{2} + C = \frac{3}{4} {x}^{4} - \frac{2}{3} {x}^{3} + \frac{5}{2} {x}^{2} + C[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
integral tak tentu
[tex] \int {mx}^{n} \to \: \frac{ {mx}^{n + 1} }{n + 1} + C \\ [/tex]
maka:
[tex] \int(3 {x}^{ 3} - 2 {x}^{2} + 5x) \: dx \\ \frac{3 {x}^{3 + 1} }{3 + 1} - \frac{2 {x}^{2 + 1} }{2 + 1} + \frac{5 {x}^{1 + 1} }{1 + 1} + C \\ \frac{3 {x}^{4} }{4} - \frac{2 {x}^{3} }{3} + \frac{5 {x}^{2} }{2} + C = \frac{3}{4} {x}^{4} - \frac{2}{3} {x}^{3} + \frac{5}{2} {x}^{2} + C[/tex]