Necesito un ejemplo completo de ecuacion de 2do grado completa. Gracias
0445513686910
Ecuación de segundo gradoLos puntos comunes de una parábola con el eje X (recta y = 0), las raíces, son las soluciones reales de la ecuación cuadrática.
Una ecuación de segundo grado1 2 o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. La expresión canónica general de una ecuación cuadrática de una variable es:
donde x es la variable, y a, b y c constantes; a es el coeficientecuadrático (distinto de 0), b el coeficiente lineal y c es el término independiente. Este polinomio se puede interpretar mediante la gráficade una función cuadrática, es decir, por una parábola. Esta representación gráfica es útil, porque las intersecciones o punto tangencial de esta gráfica, en el caso de existir, con el eje X coinciden con las soluciones reales de la ecuación.
Índice [ocultar] 1Historia2Ecuación completa de segundo grado2.1Discriminante3Forma reducida de la ecuación completa4Ecuaciones incompletas4.1Sin término independiente4.2Sin término lineal4.3Solo el término de segundo grado5Completa con coeficiente lineal par6Completa reducida con coeficiente lineal par7Ecuación bicuadrada7.1Ecuación bicuadrada simétrica7.2Teorema de Cardano-Vieta8Véase también9Referencias9.1Enlaces externosHistoria[editar]
Las ecuaciones de segundo grado y su solución de las ecuaciones se conocen desde la antigüedad. En Babilonia se conocieron algoritmos para resolverla. Fue encontrado independientemente en otros lugares del mundo. En Grecia, el matemático Diofanto de Alejandría aportó un procedimiento para resolver este tipo de ecuaciones (aunque su método sólo proporcionaba una de las soluciones, incluso en el caso de que las dos soluciones sean positivas). La primera solución completa la desarrolló el matemático Al-Juarismi (o Al-Khwarizmi según otras grafías), en el siglo IX en su trabajo Compendio de cálculo por reintegración y comparación, cerrando con ello un problema que se había perseguido durante siglos. Basándose en el trabajo de Al-Juarismi, el matemático judeoespañol Abraham bar Hiyya, en su Liber embadorum, discute la solución de estas ecuaciones.[cita requerida] Hay que esperar a Évariste Galois para conseguir resolver en general las ecuaciones polinómicas, o saber cuándo son irresolubles por radicales, que viene a ser una generalización de los métodos de resolución de las ecuaciones de segundo grado.
La primera gran dificultad pudo surgir en la solución de ecuaciones cuadráticas se dio con la ecuación en la época de los pitagóricos, al calcular la longitud de la diagonal de un cuadrado de lado 1 ya que no se podía expresar la raíz cuadrada de dos como razón de dos números enteros.3
En el Renacimiento al resolver que requiere hallar un número real cuyo cuadrado sea -1, se superó con la adopción de números imaginarios y la definición de la unidad imaginaria i que cumple .4 5
Ecuación completa de segundo grado[editar]
Para una ecuación cuadrática con coeficientes reales o complejos existen siempre dos soluciones, no necesariamente distintas, llamadas raíces, que pueden ser reales o complejas (si los coeficientes son reales y existen dos soluciones no reales, entonces deben ser complejas conjugadas). Fórmula general para la obtención de raíces:
Se usa ± para indicar las dos soluciones:
y[Expandir]Deducción de la soluciónDiscriminante[editar]Ejemplo del signo del discriminante: ■ : sin raíces reales. sin embargo dos raíces complejas conjugadas. ■ : una raíz real, pero de (multiplicidad 2) ■ : dos raíces reales distintas.
En la fórmula anterior, la expresión dentro de la raíz cuadrada recibe el nombre de discriminante de la ecuación cuadrática. Suele representarse con la letra D o bien con la letra griega Δ (delta) en mayúscula:
Una ecuación cuadrática con coeficientes reales tiene o bien dos soluciones reales distintas o una sola solución real de multiplicidad 2, o bien dos raíces complejas. El discriminante determina la índole y lacantidad de raíces.
Si hay dos soluciones reales y diferentes (la parábola cruza dos veces el eje de las abscisas: X):.Si hay una solución real doble (la parábola sólo toca en un punto al eje de las abscisas: X):Si hay dos soluciones complejas conjugadas (la parábola no corta al eje de las abscisas: X):donde i es la unidad imaginaria.Forma reducida de la ecuación completa.
Una ecuación de segundo grado1 2 o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. La expresión canónica general de una ecuación cuadrática de una variable es:
donde x es la variable, y a, b y c constantes; a es el coeficientecuadrático (distinto de 0), b el coeficiente lineal y c es el término independiente. Este polinomio se puede interpretar mediante la gráficade una función cuadrática, es decir, por una parábola. Esta representación gráfica es útil, porque las intersecciones o punto tangencial de esta gráfica, en el caso de existir, con el eje X coinciden con las soluciones reales de la ecuación.
Índice [ocultar] 1Historia2Ecuación completa de segundo grado2.1Discriminante3Forma reducida de la ecuación completa4Ecuaciones incompletas4.1Sin término independiente4.2Sin término lineal4.3Solo el término de segundo grado5Completa con coeficiente lineal par6Completa reducida con coeficiente lineal par7Ecuación bicuadrada7.1Ecuación bicuadrada simétrica7.2Teorema de Cardano-Vieta8Véase también9Referencias9.1Enlaces externosHistoria[editar]Las ecuaciones de segundo grado y su solución de las ecuaciones se conocen desde la antigüedad. En Babilonia se conocieron algoritmos para resolverla. Fue encontrado independientemente en otros lugares del mundo. En Grecia, el matemático Diofanto de Alejandría aportó un procedimiento para resolver este tipo de ecuaciones (aunque su método sólo proporcionaba una de las soluciones, incluso en el caso de que las dos soluciones sean positivas). La primera solución completa la desarrolló el matemático Al-Juarismi (o Al-Khwarizmi según otras grafías), en el siglo IX en su trabajo Compendio de cálculo por reintegración y comparación, cerrando con ello un problema que se había perseguido durante siglos. Basándose en el trabajo de Al-Juarismi, el matemático judeoespañol Abraham bar Hiyya, en su Liber embadorum, discute la solución de estas ecuaciones.[cita requerida] Hay que esperar a Évariste Galois para conseguir resolver en general las ecuaciones polinómicas, o saber cuándo son irresolubles por radicales, que viene a ser una generalización de los métodos de resolución de las ecuaciones de segundo grado.
La primera gran dificultad pudo surgir en la solución de ecuaciones cuadráticas se dio con la ecuación en la época de los pitagóricos, al calcular la longitud de la diagonal de un cuadrado de lado 1 ya que no se podía expresar la raíz cuadrada de dos como razón de dos números enteros.3
En el Renacimiento al resolver que requiere hallar un número real cuyo cuadrado sea -1, se superó con la adopción de números imaginarios y la definición de la unidad imaginaria i que cumple .4 5
Ecuación completa de segundo grado[editar]Para una ecuación cuadrática con coeficientes reales o complejos existen siempre dos soluciones, no necesariamente distintas, llamadas raíces, que pueden ser reales o complejas (si los coeficientes son reales y existen dos soluciones no reales, entonces deben ser complejas conjugadas). Fórmula general para la obtención de raíces:
Se usa ± para indicar las dos soluciones:
y[Expandir]Deducción de la soluciónDiscriminante[editar]Ejemplo del signo del discriminante:■ : sin raíces reales. sin embargo dos raíces complejas conjugadas.
■ : una raíz real, pero de (multiplicidad 2)
■ : dos raíces reales distintas.
En la fórmula anterior, la expresión dentro de la raíz cuadrada recibe el nombre de discriminante de la ecuación cuadrática. Suele representarse con la letra D o bien con la letra griega Δ (delta) en mayúscula:
Una ecuación cuadrática con coeficientes reales tiene o bien dos soluciones reales distintas o una sola solución real de multiplicidad 2, o bien dos raíces complejas. El discriminante determina la índole y lacantidad de raíces.
Si hay dos soluciones reales y diferentes (la parábola cruza dos veces el eje de las abscisas: X):.Si hay una solución real doble (la parábola sólo toca en un punto al eje de las abscisas: X):Si hay dos soluciones complejas conjugadas (la parábola no corta al eje de las abscisas: X):donde i es la unidad imaginaria.Forma reducida de la ecuación completa.