Explicación paso a paso:
F(x)=3x²+5x+2
primer paso:
[tex]f(x) = 3(x {}^{2} + \frac{ 5}{3} x) + 2[/tex]
segundo paso;
[tex]f(x) + = 3(x {}^{2} + \frac{5}{3} x + signo \: de \: pregunta) + 2[/tex]
tercer paso:
[tex]f(x) + signo \: de \: pregunta = 3(x {}^{2} + \frac{5}{3} x + \frac{25}{36} ) + 2[/tex]
cuarto paso:
[tex]f(x) + =3x \frac{25}{36} = 3(x {}^{2} + \frac{5}{3} x + \frac{25}{36} ) + 2[/tex]
quinto paso:
[tex]f(x) + \frac{25}{12} = 3(x + \frac{5}{6}) {}^{2} + 2[/tex]
sexto paso:
[tex]f(x) = 3(x + \frac{5}{6} ) {}^{2} + 2 - \frac{25}{12} [/tex]
Solución final:
[tex]f(x) = 3(x + \frac{5}{6} ) {}^{2} - \frac{1}{12} [/tex]
g(x) = x² + x
[tex]g(x) + signo \: de \: pregunta = x {}^{2} + x + signo \: de \: pregunta [/tex]
segundo paso:
[tex]g(x) + signo \: de \: pregunta = x {}^{2} + x + \frac{1}{4} [/tex]
[tex]g(x) + \frac{1}{4} = x {}^{2} + x + \frac{1}{4} [/tex]
[tex]g(x) + \frac{1}{4} = (x + \frac{1}{2} ) {}^{2} [/tex]
[tex]g(x) = (x + \frac{1}{2} ) {}^{2} - \frac{1}{4} [/tex]
Corona porfa.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
F(x)=3x²+5x+2
primer paso:
[tex]f(x) = 3(x {}^{2} + \frac{ 5}{3} x) + 2[/tex]
segundo paso;
[tex]f(x) + = 3(x {}^{2} + \frac{5}{3} x + signo \: de \: pregunta) + 2[/tex]
tercer paso:
[tex]f(x) + signo \: de \: pregunta = 3(x {}^{2} + \frac{5}{3} x + \frac{25}{36} ) + 2[/tex]
cuarto paso:
[tex]f(x) + =3x \frac{25}{36} = 3(x {}^{2} + \frac{5}{3} x + \frac{25}{36} ) + 2[/tex]
quinto paso:
[tex]f(x) + \frac{25}{12} = 3(x + \frac{5}{6}) {}^{2} + 2[/tex]
sexto paso:
[tex]f(x) = 3(x + \frac{5}{6} ) {}^{2} + 2 - \frac{25}{12} [/tex]
Solución final:
[tex]f(x) = 3(x + \frac{5}{6} ) {}^{2} - \frac{1}{12} [/tex]
g(x) = x² + x
primer paso:
[tex]g(x) + signo \: de \: pregunta = x {}^{2} + x + signo \: de \: pregunta [/tex]
segundo paso:
[tex]g(x) + signo \: de \: pregunta = x {}^{2} + x + \frac{1}{4} [/tex]
tercer paso:
[tex]g(x) + \frac{1}{4} = x {}^{2} + x + \frac{1}{4} [/tex]
cuarto paso:
[tex]g(x) + \frac{1}{4} = (x + \frac{1}{2} ) {}^{2} [/tex]
Solución final:
[tex]g(x) = (x + \frac{1}{2} ) {}^{2} - \frac{1}{4} [/tex]
Corona porfa.