El nivel nominal de medición, de la palabra latina común (nombre) describe variables de naturaleza categórica que difieren en cualidad más que en cantidad (Salkind, 1998: 113). Ante las observaciones que se realizan de la realidad, es posible asignar cada una de ellas exclusivamente a una categoría o grupo. Cada grupo o categoría se denomina con un nombre o número de forma arbitrari comparación con un número menor, pero las diferencias entre ra
ngos pueden no ser iguales.
Las operaciones matemáticas posibles son: contabilizar los elementos, igualdad y desigualdad, además de ser mayor o menor que.
Medida de intervalo o intervalar[editar]
El nivel de intervalo procede del latín interval lun (espacio entre dos paredes). Este nivel integra las variables que pueden establecer intervalos iguales entre sus valores. Las variables del nivel de intervalos permiten determinar la diferencia entre puntos a lo largo del mismo continuo. Las operaciones posibles son todas las de escalas anteriores, más la suma y la resta.
En este tipo de medida, los números asignados a los objetos tienen todas las características de las medidas ordinales, y además las diferencias entre medidas representan intervalos equivalentes. Esto es, las diferencias entre un par arbitrario de medidas puede compararse de manera significativa. Estas variables nombran, ordenan y presentan igualdad de magnitud. Por lo tanto, operaciones tales como la adición, la sustracción tienen significado. En estas variables el punto cero de la escala es arbitrario y no significa ausencia de valor. Se pueden usar valores negativos. Las razones entre valores no tienen sentido pues dependen de la posición del cero, no puede decirse que una temperatura es el doble que la otra, pues usando grados centígrados dará un resultado y usando grados Fahrenheit dará otro. Las medidas de tendencia central pueden representarse mediante la moda, la mediana al promedio aritmético. El promedio proporciona más información.
Las variables medidas al nivel de intervalo se llaman variables de intervalo o variables de escala.
Ejemplos de este tipo de variables son la fecha, la temperatura, las puntuaciones de una prueba, la escala de actitudes, las puntuaciones de IQ, conjuntos de años, entre otros.
Medida de razón o racional[editar]
El nivel de razón, cuya denominación procede del latín ratio (cálculo), integra aquellas variables con intervalos iguales que pueden situar un cero absoluto. Estas variables nombran orden, presentan intervalos iguales y el cero significa ausencia de la característica. El cero absoluto supone identificar una posición de ausencia total del rasgo o fenómeno. Tiene características importantes:
El valor cero no es arbitrario (no responde a las conveniencias de los investigadores). Un ejemplo claro es la temperatura. La existencia de un cero en la escala Celsius no supone la ausencia de temperatura, puesto que el cero grados centígrados está situado por arbitrio de los creadores de la escala. Por el contrario, la escala Kelvin sí tiene un cero absoluto, precisamente allí donde las moléculas cesan su actividad y no se produce por lo tanto roce entre los componentes moleculares. El cero absoluto de la escala Kelvin se sitúa a unos -273 grados centígrados.La presencia de un cero absoluto permite utilizar operaciones matemáticas más complejas a las otras escalas. Hasta ahora se podía asignar, establecer la igualdad (nominal), mayor o menor que (ordinal), sumar y restar (intervalo) a las que se añade multiplicar, dividir, etc.
nhm Los números asignados a los objetos tienen todas las características de las medidas de intervalo y además tienen razones significativas entre pares arbitrarios de números. Operaciones tales como la multiplicación
El nivel nominal de medición, de la palabra latina común (nombre) describe variables de naturaleza categórica que difieren en cualidad más que en cantidad (Salkind, 1998: 113). Ante las observaciones que se realizan de la realidad, es posible asignar cada una de ellas exclusivamente a una categoría o grupo. Cada grupo o categoría se denomina con un nombre o número de forma arbitrari comparación con un número menor, pero las diferencias entre ra
ngos pueden no ser iguales.
Las operaciones matemáticas posibles son: contabilizar los elementos, igualdad y desigualdad, además de ser mayor o menor que.
Medida de intervalo o intervalar[editar]El nivel de intervalo procede del latín interval lun (espacio entre dos paredes). Este nivel integra las variables que pueden establecer intervalos iguales entre sus valores. Las variables del nivel de intervalos permiten determinar la diferencia entre puntos a lo largo del mismo continuo. Las operaciones posibles son todas las de escalas anteriores, más la suma y la resta.
En este tipo de medida, los números asignados a los objetos tienen todas las características de las medidas ordinales, y además las diferencias entre medidas representan intervalos equivalentes. Esto es, las diferencias entre un par arbitrario de medidas puede compararse de manera significativa. Estas variables nombran, ordenan y presentan igualdad de magnitud. Por lo tanto, operaciones tales como la adición, la sustracción tienen significado. En estas variables el punto cero de la escala es arbitrario y no significa ausencia de valor. Se pueden usar valores negativos. Las razones entre valores no tienen sentido pues dependen de la posición del cero, no puede decirse que una temperatura es el doble que la otra, pues usando grados centígrados dará un resultado y usando grados Fahrenheit dará otro. Las medidas de tendencia central pueden representarse mediante la moda, la mediana al promedio aritmético. El promedio proporciona más información.
Las variables medidas al nivel de intervalo se llaman variables de intervalo o variables de escala.
Ejemplos de este tipo de variables son la fecha, la temperatura, las puntuaciones de una prueba, la escala de actitudes, las puntuaciones de IQ, conjuntos de años, entre otros.
Medida de razón o racional[editar]El nivel de razón, cuya denominación procede del latín ratio (cálculo), integra aquellas variables con intervalos iguales que pueden situar un cero absoluto. Estas variables nombran orden, presentan intervalos iguales y el cero significa ausencia de la característica. El cero absoluto supone identificar una posición de ausencia total del rasgo o fenómeno. Tiene características importantes:
El valor cero no es arbitrario (noresponde a las conveniencias de los investigadores). Un ejemplo claro es la temperatura. La existencia de un cero en la escala Celsius no supone la ausencia de temperatura, puesto que el cero grados centígrados está situado por arbitrio de los creadores de la escala. Por el contrario, la escala Kelvin sí tiene un cero absoluto, precisamente allí donde las moléculas cesan su actividad y no se produce por lo tanto roce entre los componentes moleculares. El cero absoluto de la escala Kelvin se sitúa a unos -273 grados centígrados.La presencia de un cero absoluto permite utilizar operaciones matemáticas más complejas a las otras escalas. Hasta ahora se podía asignar, establecer la igualdad (nominal), mayor o menor que (ordinal), sumar y restar (intervalo) a las que se añade multiplicar, dividir, etc.
nhm Los números asignados a los objetos tienen todas las características de las medidas de intervalo y además tienen razones significativas entre pares arbitrarios de números. Operaciones tales como la multiplicación