Proste o postaci kierunkowej [tex]y = ax + b[/tex] są prostopadłe, wtedy gdy iloczyn ich współczynników kierunkowych wynosi -1, czyli [tex]a_1a_2 = -1[/tex]
b)
[tex]k: y = (-0,25a + 3)x - 2[/tex]
[tex]m: y = 4x - 8[/tex]
[tex]a_1 = -0,25a + 3[/tex]
[tex]a_2 = 4[/tex]
[tex]a_1a_2 = -1[/tex]
[tex](-0,25a + 3)*4 = -1[/tex]
[tex]-a + 12 = -1[/tex]
[tex]-a = -13[/tex]
[tex]a = 13[/tex]
c)
[tex]k: y = 5 + (4-2a)x[/tex]
[tex]m = -\frac{2}{3}x + 11[/tex]
[tex]a_1 = 4-2a[/tex]
[tex]a_2 = -\frac{2}{3}[/tex]
[tex](4-2a)*(-\frac{2}{3})=-1[/tex]
[tex]-\frac{8}{3} + \frac{4}{3}a = -1[/tex]
[tex]\frac{4}{3}a = \frac{5}{3}[/tex]
[tex]4a = 5[/tex]
[tex]a = 1,2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Proste o postaci kierunkowej [tex]y = ax + b[/tex] są prostopadłe, wtedy gdy iloczyn ich współczynników kierunkowych wynosi -1, czyli [tex]a_1a_2 = -1[/tex]
b)
[tex]k: y = (-0,25a + 3)x - 2[/tex]
[tex]m: y = 4x - 8[/tex]
[tex]a_1 = -0,25a + 3[/tex]
[tex]a_2 = 4[/tex]
[tex]a_1a_2 = -1[/tex]
[tex](-0,25a + 3)*4 = -1[/tex]
[tex]-a + 12 = -1[/tex]
[tex]-a = -13[/tex]
[tex]a = 13[/tex]
c)
[tex]k: y = 5 + (4-2a)x[/tex]
[tex]m = -\frac{2}{3}x + 11[/tex]
[tex]a_1 = 4-2a[/tex]
[tex]a_2 = -\frac{2}{3}[/tex]
[tex]a_1a_2 = -1[/tex]
[tex](4-2a)*(-\frac{2}{3})=-1[/tex]
[tex]-\frac{8}{3} + \frac{4}{3}a = -1[/tex]
[tex]\frac{4}{3}a = \frac{5}{3}[/tex]
[tex]4a = 5[/tex]
[tex]a = 1,2[/tex]