Persamaan:
Kuadran I (0-90)
Sin Cos dan Tan, semua (+)
Kuadran II (90-180)
Sin (+) yang lain negatif
Kuadran III (180-270)
Tan (+) yang lain negatif
Kuadran IV (270-360)
Cos (+) yang lain negatif
Rumusnya umumnya (>90°)
Kuadran II
Sin (180-A) = Sin A
Cos (180-A) = -Cos A
Tan (180-A) = -Tan (A)
Kuadran III
Sin (180+A) = -Sin A
Cos (180+A) = -Cos A
Tan (180+A) = Tan (A)
Kuadran IV
Sin (360+A) = -Sin A
Cos (360+A) = Cos A
Tan (360+A) = -Tan (A)
1. Cos (330) = Cos(360-30) = Cos (30) = 1/2√3
2. Sec (315) = 1/cos(315) = 1/cos (360-45)
= 1/cos(45) = 1/(1/2)√2
= 2/√2 x √2/√2 = 2√2/2 = √2
3. Sin 120 + Cos 210 - tan 225
= sin (180-60) + Cos (180+30) - Tan (180+45)
= Sin 60 - Cos (30) - Tan (45)
= 1/2√3 - 1/2 √3 - 1
= -1
4. 4 tan (45) - 2cos (60) + √3 sin (60)
= 4 (1) - 2 (1/2) + √3 (1/2 √3)
= 4 - 1 + 3/2
= 3 + 1.5 = 4.5
5. Sin (300) x Cos (135) / tan (225)
= Sin (360-60) x Cos (180-45) / Tan (180+45)
= - Sin 60 x - Cos 45 / Tan 45
= (1/2√3) (1/2 √2) / 1
= 1/4 √6
Penjelasan dengan langkah-langkah:
1) Cos 330° → cos di kuadran 4 positif
= cos (360° – 30°)
= cos 30°
2) sec 315° → sec dikuadran 4 positif
= sec (360 – 45)°
= sec 45°
3) sin 120° + cos 210° – tan 225°
positif + negatif – positif
= sin (180° – 60°) + cos (180° + 30°) – tan (270° – 45°)
= sin 60° – cos 30° – tan 45°
= √3 – √3 – 1
2 2
= 0 – 1
4) 4 tan 45° – 2 cos 60° + √3 sin 60°
= 4 × 1 – 2 × 1 + √3 × √3
= 4 – 2 + √9
= 4 – 1 + 3
2
= 3 + 1½
5) sin 300° × cos 135°
tan 225°
= sin (360 – 60)° × cos (180 – 45)°
tan (180 + 45)°
= – sin 60° × ( – cos 45°)
tan 45°
– √3 × (– √2 )
= 2 2
1
semoga membantu
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban dan Penjelasan
Persamaan:
Kuadran I (0-90)
Sin Cos dan Tan, semua (+)
Kuadran II (90-180)
Sin (+) yang lain negatif
Kuadran III (180-270)
Tan (+) yang lain negatif
Kuadran IV (270-360)
Cos (+) yang lain negatif
Rumusnya umumnya (>90°)
Kuadran II
Sin (180-A) = Sin A
Cos (180-A) = -Cos A
Tan (180-A) = -Tan (A)
Kuadran III
Sin (180+A) = -Sin A
Cos (180+A) = -Cos A
Tan (180+A) = Tan (A)
Kuadran IV
Sin (360+A) = -Sin A
Cos (360+A) = Cos A
Tan (360+A) = -Tan (A)
1. Cos (330) = Cos(360-30) = Cos (30) = 1/2√3
2. Sec (315) = 1/cos(315) = 1/cos (360-45)
= 1/cos(45) = 1/(1/2)√2
= 2/√2 x √2/√2 = 2√2/2 = √2
3. Sin 120 + Cos 210 - tan 225
= sin (180-60) + Cos (180+30) - Tan (180+45)
= Sin 60 - Cos (30) - Tan (45)
= 1/2√3 - 1/2 √3 - 1
= -1
4. 4 tan (45) - 2cos (60) + √3 sin (60)
= 4 (1) - 2 (1/2) + √3 (1/2 √3)
= 4 - 1 + 3/2
= 3 + 1.5 = 4.5
5. Sin (300) x Cos (135) / tan (225)
= Sin (360-60) x Cos (180-45) / Tan (180+45)
= - Sin 60 x - Cos 45 / Tan 45
= (1/2√3) (1/2 √2) / 1
= 1/4 √6
Penjelasan dengan langkah-langkah:
1) Cos 330° → cos di kuadran 4 positif
= cos (360° – 30°)
= cos 30°
= √3
2
2) sec 315° → sec dikuadran 4 positif
= sec (360 – 45)°
= sec 45°
= √2
3) sin 120° + cos 210° – tan 225°
positif + negatif – positif
= sin (180° – 60°) + cos (180° + 30°) – tan (270° – 45°)
= sin 60° – cos 30° – tan 45°
= √3 – √3 – 1
2 2
= 0 – 1
= – 1
4) 4 tan 45° – 2 cos 60° + √3 sin 60°
= 4 × 1 – 2 × 1 + √3 × √3
2 2
= 4 – 2 + √9
2 2
= 4 – 1 + 3
2
= 3 + 1½
= 4½
5) sin 300° × cos 135°
tan 225°
= sin (360 – 60)° × cos (180 – 45)°
tan (180 + 45)°
= – sin 60° × ( – cos 45°)
tan 45°
– √3 × (– √2 )
= 2 2
1
= √6
4
semoga membantu