" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Verified answer
X^2 + (a - 2)x - a = 0x1^2 + x2^2 ==> minimum
= (x1 + x2)^2 - 2x1.x2
= (-(a - 2)/1)^2 - 2 (-a)/1
= a^2 - 4a + 4 + 2a
= a^2 - 2a + 4
Kita cari titik stasioner nya agar nilainya minimum dg turunan pertama
=> 2a - 2 = 0
=> 2a = 2
=> a = 1
x^2 + (a - 2)x - a = 0
x^2 + (1 - 2)x - 1 = 0
x^2 - x - 1 = 0
x1 + x2 = -(-1)/1 = 1
x1.x2 = c/a = -1/1 = -1
Barisan geometri
U2 = 12(x1 + x2 - x1.x2) = 12(1 - (-1)) = 12(2) = 24
U5 = x1^2 + x2^2 = (x1 + x2)^2 - 2x1.x2 = 1^2 - 2(-1) = 1 + 2 = 3
U5/U2 = 3/24
(ar^4)/(ar) = 1/8
r^3 = (1/2)^3
r = 1/2
U2 = 24
ar = 24
a(1/2) = 24
a = 48 => suku pertama