2 [D.]
Penjelasan:
[tex]\sf \lim_{x \to \infty} \frac{2}{x} cot\frac{1}{x} \\\\=2\cdot \lim_{x \to \infty} \frac{1}{x} cot(\frac{1}{x})\\\\=2\cdot \lim_{x \to \infty} \frac{cot(\frac{1}{x})}{x}[/tex] Gunakan identitas trigonometri: [tex]\sf cot\:\alpha =\frac{cos\:\alpha }{sin\:\alpha }[/tex]
[tex]\sf =2\cdot \lim_{x \to \infty} \frac{cos(\frac{1}{x})}{x\cdot sin(\frac{1}{x})}\\\\=2\cdot \frac{\lim_{x \to \infty}cos(\frac{1}{x})}{\lim_{x \to \infty}x\cdot sin(\frac{1}{x})}[/tex]
[tex]\sf\lim_{x \to \infty}cos(\frac{1}{x}) =cos(\frac{1}{\infty} )=cos(0)=1[/tex]
[tex]\sf\lim_{x \to \infty}x\cdot sin(\frac{1}{x})=\infty\cdot sin(\frac{1}{\infty} )=\infty\cdot sin(0)=\infty\cdot 0[/tex]
'∞ · 0' Maka berlaku aturan L'Hopital (turunannya).
[tex]\sf\lim_{x \to \infty}x\cdot sin(\frac{1}{x})\\\\=\lim_{x \to \infty}cos (\frac{1}{x} )\\\\=cos(\frac{1}{\infty} )\\\\=cos(0)\\\\=1[/tex]
[tex]\sf \lim_{x \to \infty} \frac{2}{x} cot\frac{1}{x}\\\\=2\cdot \frac{\lim_{x \to \infty}cos(\frac{1}{x})}{\lim_{x \to \infty}x\cdot sin(\frac{1}{x})}\\\\=2\cdot \frac{1}{1} \\\\=2[/tex]
Jadi, hasilnya 2 [D.]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2 [D.]
Penjelasan:
[tex]\sf \lim_{x \to \infty} \frac{2}{x} cot\frac{1}{x} \\\\=2\cdot \lim_{x \to \infty} \frac{1}{x} cot(\frac{1}{x})\\\\=2\cdot \lim_{x \to \infty} \frac{cot(\frac{1}{x})}{x}[/tex] Gunakan identitas trigonometri: [tex]\sf cot\:\alpha =\frac{cos\:\alpha }{sin\:\alpha }[/tex]
[tex]\sf =2\cdot \lim_{x \to \infty} \frac{cos(\frac{1}{x})}{x\cdot sin(\frac{1}{x})}\\\\=2\cdot \frac{\lim_{x \to \infty}cos(\frac{1}{x})}{\lim_{x \to \infty}x\cdot sin(\frac{1}{x})}[/tex]
[tex]\sf\lim_{x \to \infty}cos(\frac{1}{x}) =cos(\frac{1}{\infty} )=cos(0)=1[/tex]
[tex]\sf\lim_{x \to \infty}x\cdot sin(\frac{1}{x})=\infty\cdot sin(\frac{1}{\infty} )=\infty\cdot sin(0)=\infty\cdot 0[/tex]
'∞ · 0' Maka berlaku aturan L'Hopital (turunannya).
[tex]\sf\lim_{x \to \infty}x\cdot sin(\frac{1}{x})\\\\=\lim_{x \to \infty}cos (\frac{1}{x} )\\\\=cos(\frac{1}{\infty} )\\\\=cos(0)\\\\=1[/tex]
[tex]\sf \lim_{x \to \infty} \frac{2}{x} cot\frac{1}{x}\\\\=2\cdot \frac{\lim_{x \to \infty}cos(\frac{1}{x})}{\lim_{x \to \infty}x\cdot sin(\frac{1}{x})}\\\\=2\cdot \frac{1}{1} \\\\=2[/tex]
Jadi, hasilnya 2 [D.]
D. 2
see you next time....