Jawab:
limit trigonometri
Penjelasan dengan langkah-langkah:
a. lim (x → π/3) ( sin x + 2 cos x ) / ( 3 tan x)
substitusikan x= π/3
limit = ( sin π/3 + 2 cosπ/3 ) / ( 3 tan π/3)
limit = (1/2 √3 + 2 (1/2)) / (3 ( 1/3 √3))
limit = (1/2 √3 + 1 ) / (√3)
limit = { √3 ( 1/2 √3 + 1) / (3)
limit = ( 3/2 +√3 ) /3
limit = 1/6 ( 3 + √3)
.
b. lim (x→0) ( 1 - cos³ x ) / (sin² x)
lim (x→0) {( 1 - cos x) (1+ cos x + cos² x)} / (1 - cos² x)
lim (x→0) {( 1 - cos x) (1+ cos x + cos² x)} / (1 - cos x)(1 + cos x)
lim (x→0) {(1+ cos x + cos² x)} / (1 + cos x)
x= 0 , limit = ( 1 + cos 0 + cos² 0 ) / ( 1 + cos 0)
limit = (1 + 1 + 1²)/ (1 + 1)
limit = 3/2
c) lim (x→ 0) { 3x sin² 6x } / (tan³ 2x)
= (3x. (6x)² } / (2x)³
= (108 x³) / (8 x³)
= 13,5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
limit trigonometri
Penjelasan dengan langkah-langkah:
a. lim (x → π/3) ( sin x + 2 cos x ) / ( 3 tan x)
substitusikan x= π/3
limit = ( sin π/3 + 2 cosπ/3 ) / ( 3 tan π/3)
limit = (1/2 √3 + 2 (1/2)) / (3 ( 1/3 √3))
limit = (1/2 √3 + 1 ) / (√3)
limit = { √3 ( 1/2 √3 + 1) / (3)
limit = ( 3/2 +√3 ) /3
limit = 1/6 ( 3 + √3)
.
b. lim (x→0) ( 1 - cos³ x ) / (sin² x)
lim (x→0) {( 1 - cos x) (1+ cos x + cos² x)} / (1 - cos² x)
lim (x→0) {( 1 - cos x) (1+ cos x + cos² x)} / (1 - cos x)(1 + cos x)
lim (x→0) {(1+ cos x + cos² x)} / (1 + cos x)
x= 0 , limit = ( 1 + cos 0 + cos² 0 ) / ( 1 + cos 0)
limit = (1 + 1 + 1²)/ (1 + 1)
limit = 3/2
.
c) lim (x→ 0) { 3x sin² 6x } / (tan³ 2x)
= (3x. (6x)² } / (2x)³
= (108 x³) / (8 x³)
= 13,5