Pembahasan :
f(x) = 2x⁴ - 8x² + 5x + 1
f(-4) = 2(-4)⁴ - 8(-4)² + 5(-4) + 1
= 365
f(4) = 2(4)⁴ - 8(4)² + 5(4) + 1
= 405
(3x² - 8x + 13)/((x +3)(x - 1)²) = A/(x+3) + B/(x-1) + C/(x-1)²
3x² - 8x + 13 = A(x-1)² + B(x+3)(x-1) + C(x+3)
3x²- 8x + 13 = Ax²-2Ax+A + Bx²+2Bx-3B + Cx+3C
3x² - 8x + 13 = (A+B)x²+(C -2A +2B)x +(A-3B+3C)
samakan kedua ruas:
A + B = 3
C - 2A + 2B = -8
A - 3B + 3C = 13
dengan eliminasi/substitusi dihasilkan :
A = 4, B = -1, C = 2
nilai A + B + C =
4 -1 +2 =
5
f(x) = x⁹ + ax⁶ + bx³ + a + b
habis dibagi (x²-1)
x² - 1 = 0
x² = 1
x = -1 atau x = 1
f(-1) = (-1)⁹ + a(-1)⁶ + b(-1)³ + a + b = 0
2a - 1 = 0
2a = 1
a = ½
f(1) = (1)⁹ + a(1)⁶ + b(1)³ + a + b = 0
2a+2b+1 =0
2(½)+2b+1=0
2b = -2
b = -1
jadi :
f(x) = x⁹ + ½x⁶ + -x³ + ½ -1
f(x) = x⁹ +½x⁶- x³ - ½
berapa sisa jika dibagi (x³-x)
x³-x = x(x+1)(x-1) = 0
x = 0, x = 1, x = -1
f(x) = x⁹ +½x⁶- x³ -½
f(0) = -½
f(1) = 0
f(-1) = 0
sisa = ax²+bx+c
f(0) = a(0)²+b(0) +c
-½ = c
f(1) = a.1² + b(1) +c
0 = a + b + c
f(-1) = a(-1)²+b(-1)+c
0 = a -b +c
dengan eliminasi/substitusi didapat:
a = ½, b=0, c = -½
jadi sisa = ax² + bx + c
= ½x² + 0x -½
= ½x² - ½
Sisa = ½(x² - 1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Pembahasan :
f(x) = 2x⁴ - 8x² + 5x + 1
f(-4) = 2(-4)⁴ - 8(-4)² + 5(-4) + 1
= 365
f(4) = 2(4)⁴ - 8(4)² + 5(4) + 1
= 405
(3x² - 8x + 13)/((x +3)(x - 1)²) = A/(x+3) + B/(x-1) + C/(x-1)²
3x² - 8x + 13 = A(x-1)² + B(x+3)(x-1) + C(x+3)
3x²- 8x + 13 = Ax²-2Ax+A + Bx²+2Bx-3B + Cx+3C
3x² - 8x + 13 = (A+B)x²+(C -2A +2B)x +(A-3B+3C)
samakan kedua ruas:
A + B = 3
C - 2A + 2B = -8
A - 3B + 3C = 13
dengan eliminasi/substitusi dihasilkan :
A = 4, B = -1, C = 2
nilai A + B + C =
4 -1 +2 =
5
f(x) = x⁹ + ax⁶ + bx³ + a + b
habis dibagi (x²-1)
x² - 1 = 0
x² = 1
x = -1 atau x = 1
f(-1) = (-1)⁹ + a(-1)⁶ + b(-1)³ + a + b = 0
2a - 1 = 0
2a = 1
a = ½
f(1) = (1)⁹ + a(1)⁶ + b(1)³ + a + b = 0
2a+2b+1 =0
2(½)+2b+1=0
2b = -2
b = -1
jadi :
f(x) = x⁹ + ax⁶ + bx³ + a + b
f(x) = x⁹ + ½x⁶ + -x³ + ½ -1
f(x) = x⁹ +½x⁶- x³ - ½
berapa sisa jika dibagi (x³-x)
x³-x = x(x+1)(x-1) = 0
x = 0, x = 1, x = -1
f(x) = x⁹ +½x⁶- x³ -½
f(0) = -½
f(1) = 0
f(-1) = 0
sisa = ax²+bx+c
f(0) = a(0)²+b(0) +c
-½ = c
f(1) = a.1² + b(1) +c
0 = a + b + c
f(-1) = a(-1)²+b(-1)+c
0 = a -b +c
dengan eliminasi/substitusi didapat:
a = ½, b=0, c = -½
jadi sisa = ax² + bx + c
= ½x² + 0x -½
= ½x² - ½
Sisa = ½(x² - 1)