Penjelasan dengan langkah-langkah:
18.
a. ∫ sin x dx = -cos x + C
b. ∫ 4 sin x dx = -4 cos x + C
c. ∫ 4 -sin x dx = 4 + cos x + C
d. ∫ 2 sin x + 3x² dx = -2 cos x + x³ + C
19.
a. ∫ (cos x + sin x) dx
= sin x - cos x + C
b. ∫ ( 3 cos x - 4 sin x) dx
= 3 sin x + 4 cos x + C
20.
a.[0 ∫ π/6] cos x dx
= sin x | [ 0 π/6 ]
= sin (π/6) - sin (0)
= ½
b. [0∫ π/2] sin x dx
= -cos x | [ 0 π/2]
= -cos (π/2) -(-cos(0)
= 1
c. [0∫ π] (cos x + sin x) dx
= sin x - cos x |[0. π]
= (sin (π) - cos (π)) - (sin (0) - cos (0))
= 2
21.
a. [0∫ π/2] (1+cos x) dx
= x + sin x | [ 0 π/2]
= (π/2-sin (π/2)) - (0 + sin (0)
= π/2 + 1
b. [-π∫ π] (2x+sin x) dx
= x² - cos x | [ -π π ]
= ( (-π²)-cos (-π)) - ((π)²- cos (π))
= 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
18.
a. ∫ sin x dx = -cos x + C
b. ∫ 4 sin x dx = -4 cos x + C
c. ∫ 4 -sin x dx = 4 + cos x + C
d. ∫ 2 sin x + 3x² dx = -2 cos x + x³ + C
19.
a. ∫ (cos x + sin x) dx
= sin x - cos x + C
b. ∫ ( 3 cos x - 4 sin x) dx
= 3 sin x + 4 cos x + C
20.
a.[0 ∫ π/6] cos x dx
= sin x | [ 0 π/6 ]
= sin (π/6) - sin (0)
= ½
b. [0∫ π/2] sin x dx
= -cos x | [ 0 π/2]
= -cos (π/2) -(-cos(0)
= 1
c. [0∫ π] (cos x + sin x) dx
= sin x - cos x |[0. π]
= (sin (π) - cos (π)) - (sin (0) - cos (0))
= 2
21.
a. [0∫ π/2] (1+cos x) dx
= x + sin x | [ 0 π/2]
= (π/2-sin (π/2)) - (0 + sin (0)
= π/2 + 1
b. [-π∫ π] (2x+sin x) dx
= x² - cos x | [ -π π ]
= ( (-π²)-cos (-π)) - ((π)²- cos (π))
= 0