Odpowiedź:
Szczegółowe wyjaśnienie:
57.
a)
y = -3(x + 4)(x - 5) = -3(x²- 5x + 4x - 20) = -3(x² - x - 20) = -3x² + 3x + 60
Δ = 3² - 4 * (-3) * 60 = 9 + 720 = 729
b)
y = (5x - 2)(2x + 3) = 10x² + 15x - 4x - 6 = 10x² + 11x - 6
Δ = 11² - 4 * 10 * (-6) = 121 + 240 = 361
c)
y = 10 - (x - 1)(x - 4) = 10 - (x² - 4x - x + 4) = 10 - (x² - 5x + 4) = 10 - x² + 5x - 4 = -x² + 5x + 6
Δ = 5² - 4 * (-1) * 6 = 25 + 24 = 49
58.
T₁ : y = -3(x + 7)² + 27 = -3(x² + 14x + 49) + 27 = -3x² - 42x - 147 + 27 = -3x² - 42x - 120 = -3(x² + 14x + 40) = -3(x² + 10x + 4x + 40) = -3[x(x + 10) + 4(x + 10)] = -3(x + 4)(x + 10)
T₂ : y = 2(x - 11)(x - 5) = 2(x² - 5x - 11x + 55) = 2(x² - 16x + 55) = 2x² - 32x + 110 = (2x² - 32x + 128) - 18 = 2(x² - 16x + 64) - 18 = 2(x - 8)² - 18
59.
A : y = (x - 3)² + 1 = x² - 6x + 9 + 1 = x² - 6x + 10
Z : y = x² - 6x + 10
Trójmiany A i Z są równe
B : y = (x - 8)(x + 4) = x² + 4x - 8x - 32 = x² - 4x - 32
Y : y = (x - 2)² - 36 = (x² - 4x + 4) - 36 = x² - 4x - 32
Trójmiany B i Y są równe
X : y = (x - 2)(x + 4) = x² + 4x - 2x - 8 = x² + 2x - 8
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
57.
a)
y = -3(x + 4)(x - 5) = -3(x²- 5x + 4x - 20) = -3(x² - x - 20) = -3x² + 3x + 60
Δ = 3² - 4 * (-3) * 60 = 9 + 720 = 729
b)
y = (5x - 2)(2x + 3) = 10x² + 15x - 4x - 6 = 10x² + 11x - 6
Δ = 11² - 4 * 10 * (-6) = 121 + 240 = 361
c)
y = 10 - (x - 1)(x - 4) = 10 - (x² - 4x - x + 4) = 10 - (x² - 5x + 4) = 10 - x² + 5x - 4 = -x² + 5x + 6
Δ = 5² - 4 * (-1) * 6 = 25 + 24 = 49
58.
T₁ : y = -3(x + 7)² + 27 = -3(x² + 14x + 49) + 27 = -3x² - 42x - 147 + 27 = -3x² - 42x - 120 = -3(x² + 14x + 40) = -3(x² + 10x + 4x + 40) = -3[x(x + 10) + 4(x + 10)] = -3(x + 4)(x + 10)
T₂ : y = 2(x - 11)(x - 5) = 2(x² - 5x - 11x + 55) = 2(x² - 16x + 55) = 2x² - 32x + 110 = (2x² - 32x + 128) - 18 = 2(x² - 16x + 64) - 18 = 2(x - 8)² - 18
59.
A : y = (x - 3)² + 1 = x² - 6x + 9 + 1 = x² - 6x + 10
Z : y = x² - 6x + 10
Trójmiany A i Z są równe
B : y = (x - 8)(x + 4) = x² + 4x - 8x - 32 = x² - 4x - 32
Y : y = (x - 2)² - 36 = (x² - 4x + 4) - 36 = x² - 4x - 32
Trójmiany B i Y są równe
X : y = (x - 2)(x + 4) = x² + 4x - 2x - 8 = x² + 2x - 8