ALJABAR
a = 1
b = -4
c = 5
d = -4
e = 1
ax⁴ + bx³ + cx² + dx + e = 0
x⁴ - 4x³ + 5x² - 4x + 1 = 0
(x² + ax + 1)(x² + bx + 1) = 0
(x² - 3x + 1)(x² - x + 1) = 0
syarat akar real ⇢ D ≥ 0
D = b² - 4ac
x² - x + 1 = 0 akar imajiner
x² - 3x + 1 = 0 akar real
x² - 3x + 1 = 0
a = 1 ; b = -3 ; c = 1
x1,2 = (-b ± √(b² - 4ac))/(2a)
x1,2 = (3 ± √(9 - 4))/2
x1,2 = (3 ± √5)/2
Bilangan real yang memenuhi :
(3 + √5)/2 dan (3 - √5)/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ALJABAR
a = 1
b = -4
c = 5
d = -4
e = 1
ax⁴ + bx³ + cx² + dx + e = 0
x⁴ - 4x³ + 5x² - 4x + 1 = 0
(x² + ax + 1)(x² + bx + 1) = 0
(x² - 3x + 1)(x² - x + 1) = 0
syarat akar real ⇢ D ≥ 0
D = b² - 4ac
x² - x + 1 = 0 akar imajiner
x² - 3x + 1 = 0 akar real
x² - 3x + 1 = 0
a = 1 ; b = -3 ; c = 1
x1,2 = (-b ± √(b² - 4ac))/(2a)
x1,2 = (3 ± √(9 - 4))/2
x1,2 = (3 ± √5)/2
Bilangan real yang memenuhi :
(3 + √5)/2 dan (3 - √5)/2