Explicación paso a paso:
Formula de binomio al cuadrado:
(a ± b)² = a² ± 2ab + b²
Resolvamos:
a)
(3x/2 - y/3)² = (3x/2)² - 2(3x/2)(y/3) + (y/3)²
(3x/2 - y/3)² = 9x²/4 - 6xy/6 + y²/9
(3x/2 - y/3)² = 9x²/4 - xy + y²/9
b)
(2x/3 +2/5)² = (2x/3)² + 2(2x/3)(2/5) + (2/5)²
(2x/3 +2/5)² = 4x²/9 + 8x/15 + 4/25
c)
(x/3-3y/2)² = (x/3)² - 2(x/3)(3y/2) + (3y/2)²
(x/3-3y/2)² = x²/9 - 6xy/6 + 9y²/4
(x/3-3y/2)² = x²/9 - xy + 9y²/4
d)
(a-4)² = (a)² - 2(a)(4) + (4)²
(a-4)² = a²-8a+16
e)
(3a-2b)² = (3a)² - 2(3a)(2b) + (2b)²
(3a-2b)² = 9a²-12ab+4b²
f)
(2x²-5y)² = (2x²)² - 2(2x²)(5y) + (5y)²
(2x²-5y)² = 4x⁴-20x²y+25y²
g)
(x/2-3y)² = (x/2)² - 2(x/2)(3y) + (3y)²
(x/2-3y)² = x²/4 - 6xy/2 + 9y²
(x/2-3y)² = x²/4 - 3xy + 9y²
h)
(x/2+3/4)² = (x/2)² + 2(x/2)(3/4) + (3/4)²
(x/2+3/4)² = x²/4 + 6x/8 + 9/16
(x/2+3/4)² = x²/4 + 3x/4 + 9/16
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
Formula de binomio al cuadrado:
(a ± b)² = a² ± 2ab + b²
Resolvamos:
a)
(3x/2 - y/3)² = (3x/2)² - 2(3x/2)(y/3) + (y/3)²
(3x/2 - y/3)² = 9x²/4 - 6xy/6 + y²/9
(3x/2 - y/3)² = 9x²/4 - xy + y²/9
b)
(2x/3 +2/5)² = (2x/3)² + 2(2x/3)(2/5) + (2/5)²
(2x/3 +2/5)² = 4x²/9 + 8x/15 + 4/25
c)
(x/3-3y/2)² = (x/3)² - 2(x/3)(3y/2) + (3y/2)²
(x/3-3y/2)² = x²/9 - 6xy/6 + 9y²/4
(x/3-3y/2)² = x²/9 - xy + 9y²/4
d)
(a-4)² = (a)² - 2(a)(4) + (4)²
(a-4)² = a²-8a+16
e)
(3a-2b)² = (3a)² - 2(3a)(2b) + (2b)²
(3a-2b)² = 9a²-12ab+4b²
f)
(2x²-5y)² = (2x²)² - 2(2x²)(5y) + (5y)²
(2x²-5y)² = 4x⁴-20x²y+25y²
g)
(x/2-3y)² = (x/2)² - 2(x/2)(3y) + (3y)²
(x/2-3y)² = x²/4 - 6xy/2 + 9y²
(x/2-3y)² = x²/4 - 3xy + 9y²
h)
(x/2+3/4)² = (x/2)² + 2(x/2)(3/4) + (3/4)²
(x/2+3/4)² = x²/4 + 6x/8 + 9/16
(x/2+3/4)² = x²/4 + 3x/4 + 9/16