Sustitución:
5x+2y=1 [1]
-3x+3y=5 [2]
Despejando x de [1]
5x=1-2y
x=(1-2y)/5 [3]
Sustituyendo [3] en [2]
-3((1-2y)/5)+3y=5
Despejando y
(-3+6y)/5+3y=5
(-3+6y+15y)/5=5
-3+21y=5*5=25
21y=25+3=28
y=28/21
Evaluando el valor de y en [3]
x=(1-2(28/21))/5
x=-1/3
Reducción:
5x-y=3 [1]
-2x+4y=-12
2(-x+2y)=-12
-x+2y=-12/2
-x+2y=-6 [2]
Sumando [1] y [2] tenemos:
4x+y=-3 [3]
Despejando x de [3]
x=(-3-y)/4
Reemplazando x en [1] y despejando y
5((-3-y)/4)-y=3
(-15-5y)/4-y=3
(-15-5y-4y)/4=3
-15-9y=3*4=12
-9y=12+15=27
y=27/-9 ↔ y=-3
Evaluando el valor de y en [3] para obtener x
4x+(-3)=-3
4x-3=-3
4x=-3+3=0 ↔ x=0
2x+y=6 [1]
4x+3y=14 [2]
Restando [1] a [2] tenemos:
2x+2y=8
2(x+y)=8
x+y=8/2=4 [3]
x=4-y
Reemplazando x en [1]
2(4-y)+y=6
8-2y+y=6
8-y=6
8-6=y ↔ y=2
x+2=4
x=4-2 ↔ x=2
3x+5y=15 [1]
2x-3y=-9 [2]
3x=15-5y
x=(15-5y)/3
Sustituyendo x en [2] y despejando y
2((15-5y)/3)-3y=-9
(30-10y)/3-3y=-9
(30-10y-9y)/3=-9
30-19y=-9*3=-27
-19y=-27-30=-57
y=-57/-19 ↔ y=3
Evaluando el valor de y en x=(15-5y)/3
x=(15-5(3))/3
x=(15-15)/3 ↔ x=0
Igualación:
5x-2y=2 [1]
x+2y=2 [2]
5x=2+2y
x=(2+2y)/5 [3]
Despejando x de [2]
x=2-2y [4]
Igualando [3] y [4]
(2+2y)/5=2-2y
2+2y=5(2-2y)
2+2y=10-10y
2-10=-10y-2y
-8=-12y
-8/-12=y ↔ y=2/3
Evaluando el valor de y en [4]
x=2-2(2/3)
x=2-4/3 ↔ x=2/3
4x+6y=2 [1]
6x+5y=1 [2]
Despejando y de [1]
6y=2-4x
y=(2-4x)/6 [3]
Despejando y de [2]
5y=1-6x
y=(1-6x)/5 [4]
(2-4x)/6=(1-6x)/5
(2-4x)5=6(1-6x)
10-20x=6-36x
-20x+36x=6-10
16x=-4
x=-4/16 ↔ x=-1/4
Evaluando el valor de x en [4]
y=(1-6(-1/4))/5
y=(1+(3/2))/5
y=(5/2)/5=5/10 ↔ y=1/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Sustitución:
5x+2y=1 [1]
-3x+3y=5 [2]
Despejando x de [1]
5x=1-2y
x=(1-2y)/5 [3]
Sustituyendo [3] en [2]
-3((1-2y)/5)+3y=5
Despejando y
(-3+6y)/5+3y=5
(-3+6y+15y)/5=5
-3+21y=5*5=25
21y=25+3=28
y=28/21
Evaluando el valor de y en [3]
x=(1-2(28/21))/5
x=-1/3
Reducción:
5x-y=3 [1]
-2x+4y=-12
2(-x+2y)=-12
-x+2y=-12/2
-x+2y=-6 [2]
Sumando [1] y [2] tenemos:
4x+y=-3 [3]
Despejando x de [3]
x=(-3-y)/4
Reemplazando x en [1] y despejando y
5((-3-y)/4)-y=3
(-15-5y)/4-y=3
(-15-5y-4y)/4=3
-15-9y=3*4=12
-9y=12+15=27
y=27/-9 ↔ y=-3
Evaluando el valor de y en [3] para obtener x
4x+(-3)=-3
4x-3=-3
4x=-3+3=0 ↔ x=0
Reducción:
2x+y=6 [1]
4x+3y=14 [2]
Restando [1] a [2] tenemos:
2x+2y=8
2(x+y)=8
x+y=8/2=4 [3]
Despejando x de [3]
x=4-y
Reemplazando x en [1]
2(4-y)+y=6
8-2y+y=6
8-y=6
8-6=y ↔ y=2
Evaluando el valor de y en [3]
x+2=4
x=4-2 ↔ x=2
Sustitución:
3x+5y=15 [1]
2x-3y=-9 [2]
Despejando x de [1]
3x=15-5y
x=(15-5y)/3
Sustituyendo x en [2] y despejando y
2((15-5y)/3)-3y=-9
(30-10y)/3-3y=-9
(30-10y-9y)/3=-9
30-19y=-9*3=-27
-19y=-27-30=-57
y=-57/-19 ↔ y=3
Evaluando el valor de y en x=(15-5y)/3
x=(15-5(3))/3
x=(15-15)/3 ↔ x=0
Igualación:
5x-2y=2 [1]
x+2y=2 [2]
Despejando x de [1]
5x=2+2y
x=(2+2y)/5 [3]
Despejando x de [2]
x=2-2y [4]
Igualando [3] y [4]
(2+2y)/5=2-2y
2+2y=5(2-2y)
2+2y=10-10y
2-10=-10y-2y
-8=-12y
-8/-12=y ↔ y=2/3
Evaluando el valor de y en [4]
x=2-2(2/3)
x=2-4/3 ↔ x=2/3
Igualación:
4x+6y=2 [1]
6x+5y=1 [2]
Despejando y de [1]
6y=2-4x
y=(2-4x)/6 [3]
Despejando y de [2]
5y=1-6x
y=(1-6x)/5 [4]
Igualando [3] y [4]
(2-4x)/6=(1-6x)/5
(2-4x)5=6(1-6x)
10-20x=6-36x
-20x+36x=6-10
16x=-4
x=-4/16 ↔ x=-1/4
Evaluando el valor de x en [4]
y=(1-6(-1/4))/5
y=(1+(3/2))/5
y=(5/2)/5=5/10 ↔ y=1/2