Respuesta:
-164
Explicación paso a paso:
[tex] \sqrt[4]{ ( - 64) \div( - 4)} + ( - 6) {}^{2} \div 12 - (1 + 4 \times 3) {}^{2} [/tex]
[tex] \sqrt[4]{16} + ( - 6) {}^{2} \div 12 - (1 + 4 \times 3) {}^{2} [/tex]
[tex] \sqrt[4]{16} + 6 {}^{2} \div 12 - (1 + 4 \times 3) {}^{2} [/tex]
[tex] \sqrt[4]{16} + 6 {}^{2} \div 12 - (1 + 12) {}^{2} [/tex]
[tex]2 + 6 {}^{2} \div 12 - (1 + 12) {}^{2} [/tex]
[tex]2 + \frac{6 {}^{2} }{12} - (1 + 12) {}^{2} [/tex]
[tex]2 + \frac{6 {}^{2} }{12} - 13 {}^{2} [/tex]
[tex]2 + \frac{36}{12} - 13 {}^{2} [/tex]
[tex]2 + \frac{36}{12} - 169[/tex]
[tex]2 + 3 - 169[/tex]
[tex] - 164[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
-164
Explicación paso a paso:
[tex] \sqrt[4]{ ( - 64) \div( - 4)} + ( - 6) {}^{2} \div 12 - (1 + 4 \times 3) {}^{2} [/tex]
[tex] \sqrt[4]{16} + ( - 6) {}^{2} \div 12 - (1 + 4 \times 3) {}^{2} [/tex]
[tex] \sqrt[4]{16} + 6 {}^{2} \div 12 - (1 + 4 \times 3) {}^{2} [/tex]
[tex] \sqrt[4]{16} + 6 {}^{2} \div 12 - (1 + 12) {}^{2} [/tex]
[tex]2 + 6 {}^{2} \div 12 - (1 + 12) {}^{2} [/tex]
[tex]2 + \frac{6 {}^{2} }{12} - (1 + 12) {}^{2} [/tex]
[tex]2 + \frac{6 {}^{2} }{12} - 13 {}^{2} [/tex]
[tex]2 + \frac{36}{12} - 13 {}^{2} [/tex]
[tex]2 + \frac{36}{12} - 169[/tex]
[tex]2 + 3 - 169[/tex]
[tex] - 164[/tex]