Respuesta:
Cuando A es DP a B^4, entonces:
[tex] \frac{A}{ {B}^{4} } = k[/tex]
Entonces aplicamos la relación:
[tex] \frac{18}{ {4}^{4} } = k \: ...(1)[/tex]
[tex] \frac{A}{ {8}^{4} } = k \: ...(2)[/tex]
Igualamos (1) y (2):
[tex] \frac{18}{ {4}^{4} } = \frac{A}{ {8}^{4} } \\ \frac{18}{ { ({2}^{2}) }^{4} } = \frac{A}{ {( {2}^{3} )}^{4} } \\ \frac{18}{ {2}^{8} } = \frac{A}{ {2}^{12} } \\ \frac{18 \times {2}^{12} }{ {2}^{8} } = A \\ 18 \times {2}^{4} =A \\ 288 = A[/tex]
Explicación paso a paso:
de na V.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
Cuando A es DP a B^4, entonces:
[tex] \frac{A}{ {B}^{4} } = k[/tex]
Entonces aplicamos la relación:
[tex] \frac{18}{ {4}^{4} } = k \: ...(1)[/tex]
[tex] \frac{A}{ {8}^{4} } = k \: ...(2)[/tex]
Igualamos (1) y (2):
[tex] \frac{18}{ {4}^{4} } = \frac{A}{ {8}^{4} } \\ \frac{18}{ { ({2}^{2}) }^{4} } = \frac{A}{ {( {2}^{3} )}^{4} } \\ \frac{18}{ {2}^{8} } = \frac{A}{ {2}^{12} } \\ \frac{18 \times {2}^{12} }{ {2}^{8} } = A \\ 18 \times {2}^{4} =A \\ 288 = A[/tex]
Alternativa E)
¡Saludos y suerte!
Explicación paso a paso:
de na V.