a) [tex]\left(-\frac{5}{14}\right)\left(\frac{-21}{4}\right)[/tex]
[tex]=-\frac{5}{14}\cdot \frac{-21}{4}[/tex]
Siempre debemos aplicar las propiedades de las fracciones, es decir
[tex]\frac{-a}{b}=-\frac{a}{b}[/tex]
Entonces: [tex]\frac{-21}{4}=-\frac{21}{4}[/tex]
[tex]=-\frac{5}{14}\left(-\frac{21}{4}\right)[/tex]
[tex]-\frac{5}{14}\left(-\frac{21}{4}\right)=\frac{5}{14}\cdot \frac{21}{4}[/tex]
[tex]=\frac{5}{14}\cdot \frac{21}{4}[/tex]
[tex]=\frac{5\cdot \:21}{14\cdot \:4}[/tex]
Descomponemos el número en factor primo [tex]21=7\cdot \:3[/tex]
[tex]=\frac{5\cdot \:7\cdot \:3}{14\cdot \:4}[/tex]
Otra vez descomponemos [tex]14=7\cdot \:2[/tex]
[tex]=\frac{5\cdot \:7\cdot \:3}{7\cdot \:2\cdot \:4}[/tex]
Ahora eliminamos los términos comunes: 7
[tex]=\frac{5\cdot \:3}{2\cdot \:4}[/tex]
[tex]=\frac{15}{2\cdot \:4}[/tex]
[tex]\boxed{=\frac{15}{8}}[/tex]
b) [tex]\frac{54}{21}\left(-\frac{60}{42}\right)[/tex]
Cancelamos [tex]\frac{54}{21}:\frac{18}{7}[/tex]
[tex]\frac{60}{42}:\frac{10}{7}[/tex]
[tex]=\frac{18}{7}\left(-\frac{10}{7}\right)[/tex]
[tex]\frac{18}{7}\left(-\frac{10}{7}\right)=-\frac{18}{7}\cdot \frac{10}{7}[/tex]
[tex]=-\frac{18}{7}\cdot \frac{10}{7}[/tex]
[tex]=-\frac{18\cdot \:10}{7\cdot \:7}[/tex]
[tex]\boxed{=-\frac{180}{49}}[/tex]
c) [tex]\frac{75}{28}\left(\frac{-12}{80}\right)[/tex]
[tex]=\frac{75}{28}\cdot \frac{-12}{80}[/tex]
Cancelamos [tex]\frac{-12}{80}:-\frac{3}{20}[/tex]
[tex]=\frac{75}{28}\left(-\frac{3}{20}\right)[/tex]
[tex]=-\frac{75}{28}\cdot \frac{3}{20}[/tex]
[tex]=-\frac{75\cdot \:3}{28\cdot \:20}[/tex]
Descomponemos los números en factores primos
[tex]\:75=5\cdot \:15[/tex]
[tex]20=5\cdot \:4[/tex]
[tex]=-\frac{5\cdot \:15\cdot \:3}{28\cdot \:5\cdot \:4}[/tex]
Eliminamos los términos comunes: 5
Multiplicamos y la respuesta es:
[tex]\boxed{=-\frac{45}{112}}[/tex]
[tex]Buena\:suerte\:con\:tus\:tareas\::ProfeAndresFelipe :)[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
RESOLVER:
a) [tex]\left(-\frac{5}{14}\right)\left(\frac{-21}{4}\right)[/tex]
[tex]=-\frac{5}{14}\cdot \frac{-21}{4}[/tex]
Siempre debemos aplicar las propiedades de las fracciones, es decir
[tex]\frac{-a}{b}=-\frac{a}{b}[/tex]
Entonces: [tex]\frac{-21}{4}=-\frac{21}{4}[/tex]
[tex]=-\frac{5}{14}\left(-\frac{21}{4}\right)[/tex]
[tex]-\frac{5}{14}\left(-\frac{21}{4}\right)=\frac{5}{14}\cdot \frac{21}{4}[/tex]
[tex]=\frac{5}{14}\cdot \frac{21}{4}[/tex]
[tex]=\frac{5\cdot \:21}{14\cdot \:4}[/tex]
Descomponemos el número en factor primo [tex]21=7\cdot \:3[/tex]
[tex]=\frac{5\cdot \:7\cdot \:3}{14\cdot \:4}[/tex]
Otra vez descomponemos [tex]14=7\cdot \:2[/tex]
[tex]=\frac{5\cdot \:7\cdot \:3}{7\cdot \:2\cdot \:4}[/tex]
Ahora eliminamos los términos comunes: 7
[tex]=\frac{5\cdot \:3}{2\cdot \:4}[/tex]
[tex]=\frac{15}{2\cdot \:4}[/tex]
[tex]\boxed{=\frac{15}{8}}[/tex]
b) [tex]\frac{54}{21}\left(-\frac{60}{42}\right)[/tex]
Cancelamos [tex]\frac{54}{21}:\frac{18}{7}[/tex]
[tex]\frac{60}{42}:\frac{10}{7}[/tex]
[tex]=\frac{18}{7}\left(-\frac{10}{7}\right)[/tex]
[tex]\frac{18}{7}\left(-\frac{10}{7}\right)=-\frac{18}{7}\cdot \frac{10}{7}[/tex]
[tex]=-\frac{18}{7}\cdot \frac{10}{7}[/tex]
[tex]=-\frac{18\cdot \:10}{7\cdot \:7}[/tex]
[tex]\boxed{=-\frac{180}{49}}[/tex]
c) [tex]\frac{75}{28}\left(\frac{-12}{80}\right)[/tex]
[tex]=\frac{75}{28}\cdot \frac{-12}{80}[/tex]
Cancelamos [tex]\frac{-12}{80}:-\frac{3}{20}[/tex]
[tex]=\frac{75}{28}\left(-\frac{3}{20}\right)[/tex]
[tex]=-\frac{75}{28}\cdot \frac{3}{20}[/tex]
[tex]=-\frac{75\cdot \:3}{28\cdot \:20}[/tex]
Descomponemos los números en factores primos
[tex]\:75=5\cdot \:15[/tex]
[tex]20=5\cdot \:4[/tex]
[tex]=-\frac{5\cdot \:15\cdot \:3}{28\cdot \:5\cdot \:4}[/tex]
Eliminamos los términos comunes: 5
[tex]=-\frac{5\cdot \:15\cdot \:3}{28\cdot \:5\cdot \:4}[/tex]
Multiplicamos y la respuesta es:
[tex]\boxed{=-\frac{45}{112}}[/tex]
[tex]Buena\:suerte\:con\:tus\:tareas\::ProfeAndresFelipe :)[/tex]