Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]\displaystyle (0,4)^{3x+2} > 2,5\\\left(\frac{2}{5} \right)^{3x+2} > \frac{5}{2} \\\left(\frac{2}{5} \right)^{3x+2} > \left(\frac{2}{5} \right)^{-1}\\3x+2 < -1\\3x < -3/:3\\x < -1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]\displaystyle (0,4)^{3x+2} > 2,5\\\left(\frac{2}{5} \right)^{3x+2} > \frac{5}{2} \\\left(\frac{2}{5} \right)^{3x+2} > \left(\frac{2}{5} \right)^{-1}\\3x+2 < -1\\3x < -3/:3\\x < -1[/tex]