Odpowiedź:
A( -2, 2) B( 3, 2)
k : x - y + 5 = 0 ⇒ y = x + 5
zatem C ( x , x + 5)
I AB I = 3 - (-2) = 3 + 2 = 5 ⇒ I AB I² = 25
I BC I² = ( x - 3)² + ( x + 5 - 2)² = x²- 6 x + 9 + x² + 6 x + 9 = 2 x² + 18
oraz
I BC I² = I AB I² = 35
czyli
3 x² + 18 = 25
3 x² = 25 - 18 = 7 / : 3
x² = [tex]\frac{7}{3}[/tex]
x[tex]_1[/tex] = - [tex]\sqrt{\frac{7}{3} }[/tex] lub x[tex]_2[/tex] = [tex]\sqrt{\frac{7}{3} }[/tex]
y[tex]_1[/tex] = x[tex]_1[/tex] + 5 = 5 -[tex]\sqrt{\frac{7}{3} }[/tex] lub y[tex]_2[/tex] = 5 + [tex]\sqrt{\frac{7}{3} }[/tex]
Odp.
[tex]C_1 ( x_1, y_1)[/tex] [tex]C_2( x_2, y_2 )[/tex]
------------------------------------------------
[tex]\sqrt{\frac{7}{3} } = \frac{\sqrt{21} }{3}[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
A( -2, 2) B( 3, 2)
k : x - y + 5 = 0 ⇒ y = x + 5
zatem C ( x , x + 5)
I AB I = 3 - (-2) = 3 + 2 = 5 ⇒ I AB I² = 25
I BC I² = ( x - 3)² + ( x + 5 - 2)² = x²- 6 x + 9 + x² + 6 x + 9 = 2 x² + 18
oraz
I BC I² = I AB I² = 35
czyli
3 x² + 18 = 25
3 x² = 25 - 18 = 7 / : 3
x² = [tex]\frac{7}{3}[/tex]
x[tex]_1[/tex] = - [tex]\sqrt{\frac{7}{3} }[/tex] lub x[tex]_2[/tex] = [tex]\sqrt{\frac{7}{3} }[/tex]
y[tex]_1[/tex] = x[tex]_1[/tex] + 5 = 5 -[tex]\sqrt{\frac{7}{3} }[/tex] lub y[tex]_2[/tex] = 5 + [tex]\sqrt{\frac{7}{3} }[/tex]
Odp.
[tex]C_1 ( x_1, y_1)[/tex] [tex]C_2( x_2, y_2 )[/tex]
------------------------------------------------
[tex]\sqrt{\frac{7}{3} } = \frac{\sqrt{21} }{3}[/tex]
Szczegółowe wyjaśnienie: