Temat: Równania kwadratowe
Rozwiązania równań i wyjaśnienie poniżej :)
Użyte wzory:
[tex](a+b)^2=a^2+2ab+b^2\\\\(a-b)^2=a^2-2ab+b^2\\\\(a+b)(a-b)=a^2-b^2[/tex]
[tex]\Delta=b^2-4ac\\\\a, \ b, \ c\Longrightarrow y=ax^2+bx+c[/tex]
[tex]x_1=\frac{-b-\sqrt{\Delta}}{2a} \ \ \ \wedge \ \ \ x_2=\frac{-b+\sqrt{\Delta}}{2a}\\[/tex]
Pamiętaj, że jeśli Δ < 0 to równanie nie ma rozwiązania, a jeśli Δ = 0 to równanie ma jedno rozwiązanie ([tex]x_0=\frac{-b}{2a}[/tex])
a)
[tex]3(x+2)^2-2(x-2)(x+3)=8\\\\3(x^2+2\cdot x\cdot2+2^2)-2(x^2+3x-2x-6)=8\\\\3(x^2+4x+4)-2(x^2+x-6)=8\\\\3x^2+12x+12-2x^2-2x+12-8=0\\\\x^2+10x+16=0\\\\a=1, \ b=10, \ c=16\\\\\Delta=10^2-4\cdot1\cdot16=100-64=36\\\\\sqrt{\Delta}=\sqrt{36}=6\\\\x_1=\frac{-10-6}{2\cdot1}=\frac{-16}{2}=-8\\\\x_2=\frac{-10+6}{2\cdot1}=\frac{-4}{2}=-2[/tex]
b)
[tex](4x+1)^2-(2x+1)^2=(3x+1)^2\\\\((4x)^2+2\cdot4x\cdot1+1^2)-((2x)^2+2\cdot2x\cdot1+1^2)-((3x)^2+2\cdot3x\cdot1+1^2)=0\\\\16x^2+8x+1-(4x^2+4x+1)-(9x^2+6x+1)=0\\\\16x^2+8x+1-4x^2-4x-1-9x^2-6x-1=0\\\\3x^2-2x-1=0\\\\a=3, \ b=-2, \ c=-1\\\\\Delta=(-2)^2-4\cdot3\cdot(-1)=4+12=16\\\\\sqrt{\Delta}=\sqrt{16}=4\\\\x_1=\frac{-(-2)-4}{2\cdot3}=\frac{2-4}{6}=\frac{-2}{6}=-\frac{1}{3}\\\\x_2=\frac{-(-2)+4}{2\cdot3}=\frac{2+4}{6}=\frac{6}{6}=1[/tex]
c)
[tex](4-3x)^2=16-9x^2\\\\4^2-2\cdot4\cdot3x+(3x)^2=16-9x^2\\\\9x^2-24x+16-16+9x^2=0\\\\18x^2-24x=0 \ \ |:6\\\\3x^2-4x=0\\\\3x(x-\frac{4}{3})=0\\\\3x=0 \ \ \ \vee \ \ \ x-\frac{4}{3}=0\\\\x_1=0 \ \ \ \vee \ \ \ x_2=\frac{4}{3}=1\frac{1}{3}[/tex]
Tu nie ma potrzeby liczenia wyróżnika, wystarczy wyciągnąć czynnik przed nawias.
d)
[tex]2(2x-3)(x+1)-5(x-1)^2=2(x-2)(x+1)\\\\2(2x^2+2x-3x-3)-5(x^2-2\cdot x\cdot1+1^2)=2(x^2+x-2x-2)\\\\2(2x^2-x-3)-5(x^2-2x+1)=2(x^2-x-2)\\\\4x^2-2x-6-5x^2+10x-5=2x^2-2x-4\\\\-x^2+8x-11=2x^2-2x-4\\\\-x^2+8x-11-2x^2+2x+4=0\\\\-3x^2+10x-7=0\\\\a=-3, \ b=10, \ c=-7\\\\\Delta=10^2-4\cdot(-3)\cdot(-7)=100-84=16\\\\\sqrt{\Delta}=\sqrt{16}=4\\\\x_1=\frac{-10-4}{2\cdot(-3)}=\frac{-14}{-6}=\frac{14}{6}=\frac{7}{3}=2\frac{1}{3}\\\\x_2=\frac{-10+4}{2\cdot(-3)}=\frac{-6}{-6}=1[/tex]
e)
[tex](2x+5)^2-(3-2x)^2-3(x-2)(x+2)=4(5x+3)\\\\(2x)^2+2\cdot2x\cdot5+5^2-(3^2-2\cdot3\cdot2x+(2x)^2)-3(x^2-2^2)=20x+12\\\\4x^2+20x+25-(4x^2-12x+9)-3(x^2-4)=20x+12\\\\4x^2+20x+25-4x^2+12x-9-3x^2+12=20x+12\\\\-3x^2+32x+28-20x-12=0\\\\-3x^2+12x+16=0\\\\a=-3, \ b=12, \ c=16\\\\\Delta=12^2-4\cdot(-3)\cdot16=144+192=336\\\\\sqrt{\Delta}=\sqrt{336}=\sqrt{16\cdot21}=4\sqrt{21}\\\\x_1=\frac{-12-4\sqrt{21}}{2\cdot(-3)}=\frac{-12-4\sqrt{21}}{-6}=\frac{6+2\sqrt{21}}{3}[/tex]
[tex]x_2=\frac{-12+4\sqrt{21}}{2\cdot(-3)}=\frac{-12+4\sqrt{21}}{-6}=\frac{6-2\sqrt{21}}{3}\\[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Temat: Równania kwadratowe
Rozwiązania równań i wyjaśnienie poniżej :)
Użyte wzory:
[tex](a+b)^2=a^2+2ab+b^2\\\\(a-b)^2=a^2-2ab+b^2\\\\(a+b)(a-b)=a^2-b^2[/tex]
[tex]\Delta=b^2-4ac\\\\a, \ b, \ c\Longrightarrow y=ax^2+bx+c[/tex]
[tex]x_1=\frac{-b-\sqrt{\Delta}}{2a} \ \ \ \wedge \ \ \ x_2=\frac{-b+\sqrt{\Delta}}{2a}\\[/tex]
Pamiętaj, że jeśli Δ < 0 to równanie nie ma rozwiązania, a jeśli Δ = 0 to równanie ma jedno rozwiązanie ([tex]x_0=\frac{-b}{2a}[/tex])
a)
[tex]3(x+2)^2-2(x-2)(x+3)=8\\\\3(x^2+2\cdot x\cdot2+2^2)-2(x^2+3x-2x-6)=8\\\\3(x^2+4x+4)-2(x^2+x-6)=8\\\\3x^2+12x+12-2x^2-2x+12-8=0\\\\x^2+10x+16=0\\\\a=1, \ b=10, \ c=16\\\\\Delta=10^2-4\cdot1\cdot16=100-64=36\\\\\sqrt{\Delta}=\sqrt{36}=6\\\\x_1=\frac{-10-6}{2\cdot1}=\frac{-16}{2}=-8\\\\x_2=\frac{-10+6}{2\cdot1}=\frac{-4}{2}=-2[/tex]
b)
[tex](4x+1)^2-(2x+1)^2=(3x+1)^2\\\\((4x)^2+2\cdot4x\cdot1+1^2)-((2x)^2+2\cdot2x\cdot1+1^2)-((3x)^2+2\cdot3x\cdot1+1^2)=0\\\\16x^2+8x+1-(4x^2+4x+1)-(9x^2+6x+1)=0\\\\16x^2+8x+1-4x^2-4x-1-9x^2-6x-1=0\\\\3x^2-2x-1=0\\\\a=3, \ b=-2, \ c=-1\\\\\Delta=(-2)^2-4\cdot3\cdot(-1)=4+12=16\\\\\sqrt{\Delta}=\sqrt{16}=4\\\\x_1=\frac{-(-2)-4}{2\cdot3}=\frac{2-4}{6}=\frac{-2}{6}=-\frac{1}{3}\\\\x_2=\frac{-(-2)+4}{2\cdot3}=\frac{2+4}{6}=\frac{6}{6}=1[/tex]
c)
[tex](4-3x)^2=16-9x^2\\\\4^2-2\cdot4\cdot3x+(3x)^2=16-9x^2\\\\9x^2-24x+16-16+9x^2=0\\\\18x^2-24x=0 \ \ |:6\\\\3x^2-4x=0\\\\3x(x-\frac{4}{3})=0\\\\3x=0 \ \ \ \vee \ \ \ x-\frac{4}{3}=0\\\\x_1=0 \ \ \ \vee \ \ \ x_2=\frac{4}{3}=1\frac{1}{3}[/tex]
Tu nie ma potrzeby liczenia wyróżnika, wystarczy wyciągnąć czynnik przed nawias.
d)
[tex]2(2x-3)(x+1)-5(x-1)^2=2(x-2)(x+1)\\\\2(2x^2+2x-3x-3)-5(x^2-2\cdot x\cdot1+1^2)=2(x^2+x-2x-2)\\\\2(2x^2-x-3)-5(x^2-2x+1)=2(x^2-x-2)\\\\4x^2-2x-6-5x^2+10x-5=2x^2-2x-4\\\\-x^2+8x-11=2x^2-2x-4\\\\-x^2+8x-11-2x^2+2x+4=0\\\\-3x^2+10x-7=0\\\\a=-3, \ b=10, \ c=-7\\\\\Delta=10^2-4\cdot(-3)\cdot(-7)=100-84=16\\\\\sqrt{\Delta}=\sqrt{16}=4\\\\x_1=\frac{-10-4}{2\cdot(-3)}=\frac{-14}{-6}=\frac{14}{6}=\frac{7}{3}=2\frac{1}{3}\\\\x_2=\frac{-10+4}{2\cdot(-3)}=\frac{-6}{-6}=1[/tex]
e)
[tex](2x+5)^2-(3-2x)^2-3(x-2)(x+2)=4(5x+3)\\\\(2x)^2+2\cdot2x\cdot5+5^2-(3^2-2\cdot3\cdot2x+(2x)^2)-3(x^2-2^2)=20x+12\\\\4x^2+20x+25-(4x^2-12x+9)-3(x^2-4)=20x+12\\\\4x^2+20x+25-4x^2+12x-9-3x^2+12=20x+12\\\\-3x^2+32x+28-20x-12=0\\\\-3x^2+12x+16=0\\\\a=-3, \ b=12, \ c=16\\\\\Delta=12^2-4\cdot(-3)\cdot16=144+192=336\\\\\sqrt{\Delta}=\sqrt{336}=\sqrt{16\cdot21}=4\sqrt{21}\\\\x_1=\frac{-12-4\sqrt{21}}{2\cdot(-3)}=\frac{-12-4\sqrt{21}}{-6}=\frac{6+2\sqrt{21}}{3}[/tex]
[tex]x_2=\frac{-12+4\sqrt{21}}{2\cdot(-3)}=\frac{-12+4\sqrt{21}}{-6}=\frac{6-2\sqrt{21}}{3}\\[/tex]