[tex]x= 3^{-\frac{2}{3} } * \sqrt{27} = 3^{-\frac{2}{3} } * 3 = 3^{-\frac{2}{3} +1} = 3^{\frac{1}{3}}\\ \\a)\ w = \frac{1}{3}\\\\b)\\k < 3^{\frac{1}{3}} < k+1\\k < 3^{\frac{1}{3}}\ oraz\ 3^{\frac{1}{3}} < k+1\\k < \sqrt[3]{3}\ oraz\ \sqrt[3]{3} < k+1\\k < \sqrt[3]{3}\ oraz\ \sqrt[3]{3} -1 < k\\[/tex]
k ∈ (∛3 - 1 ; ∛3)
∛3 ≈ 1,44 ⇒ k ∈ (0,44 ; 1,44) ← wartości w przybliżeniu
k ∈ (0,44 ; 1,44) ∧ k ∈ Z ⇒ k = 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex]x= 3^{-\frac{2}{3} } * \sqrt{27} = 3^{-\frac{2}{3} } * 3 = 3^{-\frac{2}{3} +1} = 3^{\frac{1}{3}}\\ \\a)\ w = \frac{1}{3}\\\\b)\\k < 3^{\frac{1}{3}} < k+1\\k < 3^{\frac{1}{3}}\ oraz\ 3^{\frac{1}{3}} < k+1\\k < \sqrt[3]{3}\ oraz\ \sqrt[3]{3} < k+1\\k < \sqrt[3]{3}\ oraz\ \sqrt[3]{3} -1 < k\\[/tex]
k ∈ (∛3 - 1 ; ∛3)
∛3 ≈ 1,44 ⇒ k ∈ (0,44 ; 1,44) ← wartości w przybliżeniu
k ∈ (0,44 ; 1,44) ∧ k ∈ Z ⇒ k = 1