[tex]\boxed{a_n=-\left(\dfrac{4\sqrt{21}}{21}+1\right)\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+\left(\dfrac{4\sqrt{21}}{21}-1\right)\cdot \left(\dfrac{3+\sqrt{21}}{2}\right)^n}[/tex]
Jeżeli dany jest ciąg w postaci rekurencyjnej:
[tex]\left\{\begin{array}{l}{a_0=...\\\\a_1=...\\\\a_n=ba_{n-1}+ca_{n-2}}\end{array}\right.[/tex]
Korzystając z równania charakterystycznego wyznacz wzór ogólny ciągu postaci aₙ=3aₙ₋₁+3aₙ₋₂, gdzie a₀=-2 i a₁=1.
Zapisujemy postać rekurencyjną ciągu:
[tex]\left\{\begin{array}{l}a_0=-2\\\\a_1=1\\\\a_n=3a_{n-1}+3a_{n-2}\end{array}\right.[/tex]
Przekształcamy zależność rekurencyjną:
[tex]a_n=3a_{n-1}+3a_{n-2}\Rightarrow \underline{\bold{a_n-3a_{n-1}-3a_{n-2}=0}}[/tex]
Tworzymy równanie charakterystyczne:
[tex]r^2-3r-3=0[/tex]
[tex]\Delta=(-3)^2-4\cdot 1\cdot (-3)=9+12=21\\\\r_1=\dfrac{3-\sqrt{21}}{2},\:\:\:r_2=\dfrac{3+\sqrt{21}}2[/tex]
Zapisujemy postać ogólną:
[tex]a_n=c_1\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+c_2\cdot \left(\dfrac{3+\sqrt{21}}2\right)^n[/tex]
Podstawiamy wyraz a₀:
[tex]a_0=c_1\cdot \left(\dfrac{3-\sqrt{21}}2\right)^0+c_2\cdot \left(\dfrac{3+\sqrt{21}}2\right)^0\\\\-2=c_1\cdot 1+c_2\cdot 1\\\\\underline{\bold{-2=c_1+c_2}}[/tex]
Podstawiamy wyraz a₁:
[tex]\begin{array}{lll}a_1=c_1\cdot \left(\dfrac{3-\sqrt{21}}2\right)^1+c_2\cdot \left(\dfrac{3+\sqrt{21}}2\right)^1\\\\1=c_1\cdot \dfrac{3-\sqrt{21}}2+c_2\cdot \dfrac{3+\sqrt{21}}2&|&\cdot 2\\\\\underline{\bold{2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})}}\end{array}[/tex]
Rozwiązujemy układ równań:
[tex]\left\{\begin{array}{lll}-2=c_1+c_2&|&\cdot (3-\sqrt{21})\\\\2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})\end{array}\right.\\\\\\\left\{\begin{array}{lll}-2(3-\sqrt{21})=c_1(3-\sqrt{21})+c_2(3-\sqrt{21})&|&\cdot (-1)\\\\2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})\end{array}\right.\\\\\\\underline{+\left\{\begin{array}{lll}2(3-\sqrt{21})=-c_1(3-\sqrt{21})-c_2(3-\sqrt{21})\\\\2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})\end{array}\right.}[/tex]
[tex]\begin{array}{lll}2(3-\sqrt{21})+2=-c_2(3-\sqrt{21})+c_2(3+\sqrt{21})\\\\6-2\sqrt{21}+2=c_2(3+\sqrt{21})-c_2(3-\sqrt{21})\\\\8-2\sqrt{21}=3c_2+\sqrt{21}c_2-3c_2+\sqrt{21}c_2\\\\8-2\sqrt{21}=2\sqrt{21}c_2&|&:2\sqrt{21}\\\\c_2=\dfrac{2(4-\sqrt{21})}{2\sqrt{21}}\\\\c_2=\dfrac{4-\sqrt{21}}{\sqrt{21}}\\\\c_2=\dfrac{4\sqrt{21}-21}{21}\\\\\underline{\bold{c_2=\dfrac{4\sqrt{21}}{21}-1}}\end{array}[/tex]
[tex]\begin{array}{lll}-2=c_1+\dfrac{4\sqrt{21}}{21}-1&|&+1\\\\-1=c_1+\dfrac{4\sqrt{21}}{21}&|&-\dfrac{4\sqrt{21}}{21}\\\\\underline{\bold{c_1=-1-\dfrac{4\sqrt{21}}{21}}}\end{array}[/tex]
Zapisujemy postać jawną:
[tex]a_n=\left(-1-\dfrac{4\sqrt{21}}{21}\right)\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+\left(\dfrac{4\sqrt{21}}{21}-1\right)\cdot \left(\dfrac{3+\sqrt{21}}{2}\right)^n\\\\\\\boxed{a_n=-\left(\dfrac{4\sqrt{21}}{21}+1\right)\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+\left(\dfrac{4\sqrt{21}}{21}-1\right)\cdot \left(\dfrac{3+\sqrt{21}}{2}\right)^n}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\boxed{a_n=-\left(\dfrac{4\sqrt{21}}{21}+1\right)\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+\left(\dfrac{4\sqrt{21}}{21}-1\right)\cdot \left(\dfrac{3+\sqrt{21}}{2}\right)^n}[/tex]
Zależności rekurencyjne typu aₙ=baₙ₋₁+caₙ₋₂
Jeżeli dany jest ciąg w postaci rekurencyjnej:
[tex]\left\{\begin{array}{l}{a_0=...\\\\a_1=...\\\\a_n=ba_{n-1}+ca_{n-2}}\end{array}\right.[/tex]
[tex]a_n-ba_{n-1}-ca_{n-2}=0[/tex]
[tex]r^2-br-c=0[/tex]
[tex]\text{Jezeli }r_1\neq r_2 (\Delta > 0) \to a_n=c_1r_1^n+c_2r_2^n\\\\\\\text{Jezeli }r_1=r_2=r(\Delta=0) \to a_n=c_1r^n+c_2nr^n[/tex]
Zadanie:
Korzystając z równania charakterystycznego wyznacz wzór ogólny ciągu postaci aₙ=3aₙ₋₁+3aₙ₋₂, gdzie a₀=-2 i a₁=1.
Rozwiązanie:
Zapisujemy postać rekurencyjną ciągu:
[tex]\left\{\begin{array}{l}a_0=-2\\\\a_1=1\\\\a_n=3a_{n-1}+3a_{n-2}\end{array}\right.[/tex]
Przekształcamy zależność rekurencyjną:
[tex]a_n=3a_{n-1}+3a_{n-2}\Rightarrow \underline{\bold{a_n-3a_{n-1}-3a_{n-2}=0}}[/tex]
Tworzymy równanie charakterystyczne:
[tex]r^2-3r-3=0[/tex]
[tex]\Delta=(-3)^2-4\cdot 1\cdot (-3)=9+12=21\\\\r_1=\dfrac{3-\sqrt{21}}{2},\:\:\:r_2=\dfrac{3+\sqrt{21}}2[/tex]
Zapisujemy postać ogólną:
[tex]a_n=c_1\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+c_2\cdot \left(\dfrac{3+\sqrt{21}}2\right)^n[/tex]
Podstawiamy wyraz a₀:
[tex]a_0=c_1\cdot \left(\dfrac{3-\sqrt{21}}2\right)^0+c_2\cdot \left(\dfrac{3+\sqrt{21}}2\right)^0\\\\-2=c_1\cdot 1+c_2\cdot 1\\\\\underline{\bold{-2=c_1+c_2}}[/tex]
Podstawiamy wyraz a₁:
[tex]\begin{array}{lll}a_1=c_1\cdot \left(\dfrac{3-\sqrt{21}}2\right)^1+c_2\cdot \left(\dfrac{3+\sqrt{21}}2\right)^1\\\\1=c_1\cdot \dfrac{3-\sqrt{21}}2+c_2\cdot \dfrac{3+\sqrt{21}}2&|&\cdot 2\\\\\underline{\bold{2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})}}\end{array}[/tex]
Rozwiązujemy układ równań:
[tex]\left\{\begin{array}{lll}-2=c_1+c_2&|&\cdot (3-\sqrt{21})\\\\2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})\end{array}\right.\\\\\\\left\{\begin{array}{lll}-2(3-\sqrt{21})=c_1(3-\sqrt{21})+c_2(3-\sqrt{21})&|&\cdot (-1)\\\\2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})\end{array}\right.\\\\\\\underline{+\left\{\begin{array}{lll}2(3-\sqrt{21})=-c_1(3-\sqrt{21})-c_2(3-\sqrt{21})\\\\2=c_1(3-\sqrt{21})+c_2(3+\sqrt{21})\end{array}\right.}[/tex]
[tex]\begin{array}{lll}2(3-\sqrt{21})+2=-c_2(3-\sqrt{21})+c_2(3+\sqrt{21})\\\\6-2\sqrt{21}+2=c_2(3+\sqrt{21})-c_2(3-\sqrt{21})\\\\8-2\sqrt{21}=3c_2+\sqrt{21}c_2-3c_2+\sqrt{21}c_2\\\\8-2\sqrt{21}=2\sqrt{21}c_2&|&:2\sqrt{21}\\\\c_2=\dfrac{2(4-\sqrt{21})}{2\sqrt{21}}\\\\c_2=\dfrac{4-\sqrt{21}}{\sqrt{21}}\\\\c_2=\dfrac{4\sqrt{21}-21}{21}\\\\\underline{\bold{c_2=\dfrac{4\sqrt{21}}{21}-1}}\end{array}[/tex]
[tex]\begin{array}{lll}-2=c_1+\dfrac{4\sqrt{21}}{21}-1&|&+1\\\\-1=c_1+\dfrac{4\sqrt{21}}{21}&|&-\dfrac{4\sqrt{21}}{21}\\\\\underline{\bold{c_1=-1-\dfrac{4\sqrt{21}}{21}}}\end{array}[/tex]
Zapisujemy postać jawną:
[tex]a_n=\left(-1-\dfrac{4\sqrt{21}}{21}\right)\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+\left(\dfrac{4\sqrt{21}}{21}-1\right)\cdot \left(\dfrac{3+\sqrt{21}}{2}\right)^n\\\\\\\boxed{a_n=-\left(\dfrac{4\sqrt{21}}{21}+1\right)\cdot \left(\dfrac{3-\sqrt{21}}2\right)^n+\left(\dfrac{4\sqrt{21}}{21}-1\right)\cdot \left(\dfrac{3+\sqrt{21}}{2}\right)^n}[/tex]