Odpowiedź:
zad 1
a)
[(4x - 3)(x - 2)]/(6x - 2) = 0
założenie:
6x - 2 ≠ 0
2(3x - 1) ≠ 0
3x - 1 ≠ 0
3x ≠ 1
x ≠ 1/3
D: x ∈ R \ {1/3}
(4x - 3)(x - 2) = 0
4x - 3 = 0 ∨ x - 2 = 0
4x = 3 ∨ x = 2
x = 3/4 ∨ x = 2
b)
4/(x + 3) = x + 3
x + 3 ≠ 0
x ≠ - 3
D: x ∈ R \ {3}
4/(x + 3) = x + 3 | * (x + 3)
4 = (x + 3)(x + 3) = (x + 3)² = x² + 6x + 9
x² + 6x + 9 = 4
x² + 6x + 9 - 4 = 0
x² + 6x + 5 = 0
a = 1 , b = 6 , c = 5
Δ = b² - 4ac = 6² - 4 * 1 * 5 = 36 - 20 = 16
√Δ = √16 = 4
x₁ = (- b - √Δ)/2a = (- 6 - 4)/2 = - 10/2 = - 5
x₂ = (- b + √Δ)/2a = (- 6 + 4)/2 = - 2/2 = - 1
zad 2
Ix + 6I = 2
x + 6 = 2 ∨ x + 6 = - 2
x = 2 - 6 ∨ x = - 2 - 6
x = - 4 ∨ x = - 8
Ix - 3I = 7
x - 3 = 7 ∨ x - 3 = - 7
x = 7 + 3 ∨ x = - 7 + 3
x = 10 ∨ x = - 4
zad 3
Ix - 6I ≤ 2
x - 6 ≤ 2 ∧ x - 6 ≥ - 2
x ≤ 2 + 6 ∧ x ≥ - 2 + 6
x ≤ 8 ∧ x ≥ 4
x ∈ < 4 , 8 >
Ix - 3I ≥ 5
x - 3 ≥ 5 ∨ x - 3 ≤ - 5
x ≥ 5 + 3 ∧ x ≤ - 5 + 3
x ≥ 8 ∧ x ≤ - 2
x ∈ ( - ∞ , - 2 > ∪ < 8 , + ∞ )
∧ - znaczy " i "
∨ - znaczy " lub "
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
zad 1
a)
[(4x - 3)(x - 2)]/(6x - 2) = 0
założenie:
6x - 2 ≠ 0
2(3x - 1) ≠ 0
3x - 1 ≠ 0
3x ≠ 1
x ≠ 1/3
D: x ∈ R \ {1/3}
(4x - 3)(x - 2) = 0
4x - 3 = 0 ∨ x - 2 = 0
4x = 3 ∨ x = 2
x = 3/4 ∨ x = 2
b)
4/(x + 3) = x + 3
założenie:
x + 3 ≠ 0
x ≠ - 3
D: x ∈ R \ {3}
4/(x + 3) = x + 3 | * (x + 3)
4 = (x + 3)(x + 3) = (x + 3)² = x² + 6x + 9
x² + 6x + 9 = 4
x² + 6x + 9 - 4 = 0
x² + 6x + 5 = 0
a = 1 , b = 6 , c = 5
Δ = b² - 4ac = 6² - 4 * 1 * 5 = 36 - 20 = 16
√Δ = √16 = 4
x₁ = (- b - √Δ)/2a = (- 6 - 4)/2 = - 10/2 = - 5
x₂ = (- b + √Δ)/2a = (- 6 + 4)/2 = - 2/2 = - 1
zad 2
a)
Ix + 6I = 2
x + 6 = 2 ∨ x + 6 = - 2
x = 2 - 6 ∨ x = - 2 - 6
x = - 4 ∨ x = - 8
b)
Ix - 3I = 7
x - 3 = 7 ∨ x - 3 = - 7
x = 7 + 3 ∨ x = - 7 + 3
x = 10 ∨ x = - 4
zad 3
a)
Ix - 6I ≤ 2
x - 6 ≤ 2 ∧ x - 6 ≥ - 2
x ≤ 2 + 6 ∧ x ≥ - 2 + 6
x ≤ 8 ∧ x ≥ 4
x ∈ < 4 , 8 >
b)
Ix - 3I ≥ 5
x - 3 ≥ 5 ∨ x - 3 ≤ - 5
x ≥ 5 + 3 ∧ x ≤ - 5 + 3
x ≥ 8 ∧ x ≤ - 2
x ∈ ( - ∞ , - 2 > ∪ < 8 , + ∞ )
∧ - znaczy " i "
∨ - znaczy " lub "