" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
f(X) = y = √(2x - 1) / x² - x
u = (2x - 1)^½
u' = ½ . 2 (2x - 1)^-½ = 1/√(2x - 1)
v = x² - x
v' = 2x - 1
u' v - v' u
y' = ____________
v²
[1/√(2x - 1) • (x² - x)] - [(2x - 1) • √(2x - 1) ]
y' = ____________________________________
(x² - 1)²
(x² - x)/√(2x - 1) - (2x - 1) √(2x - 1)
y' = ____________________________
(x² - 1)²
(x² - 1)/√(2x - 1) - (4x² - 4x + 1)/√(2x - 1)
y' = __________________________________
(x² - 1)²
(-3x² + 4x) / √(2x - 1)
y' = _____________________
(x² - 1)²
-3x² + 2x - 1
y' = __________________
√(2x - 1) • (x² - 1)²
5.)
f(x) = y = cos⁶ (2x² - x + 3)
u = cos⁶ x
u' = 6 • (-sin x) • cos⁵ x = -6 sin x cos⁵ x
v = 2x² - x + 3
v' = 4x - 1
y' = u' v + v' u
y' = [ (-6 sin x cos⁵ x) • (2x² - x + 3) ] + [ (4x - 1) • cos⁶ x ]