[tex] \sf \: f(2x - 5) = x \sqrt{x - 1} [/tex]
[tex] \sf \: f \: turunan \: pertama \: [/tex]
[tex] \sf12f(15) = ....[/tex]
[tex] \sf \: f(x) = ( \frac{x + 5}{2} ) \sqrt{ \frac{x + 5}{2} - 1 } [/tex]
[tex] \sf \: f(x) = ( \frac{x + 5}{2} ) \sqrt{ \frac{x + 5 - 1}{2} } [/tex]
[tex] \sf \: \: f(x) = ( \frac{x + 5}{2} ) \sqrt{ \frac{x + 3}{2} } [/tex]
[tex] \sf \: f’(x) = \frac{1}{2} \sqrt{ \frac{x + 3}{2} } + \frac{1}{ 2\sqrt{ \frac{x + 3}{2} } } \times \frac{1}{2} ( \frac{x + 5}{2} )[/tex]
[tex] \sf \: f’(15) = \frac{14}{6} [/tex]
[tex] \sf \:12 f’(15) = 12\frac{14}{6} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: = 28[/tex]
Jawaban:
2f-¹(15) = 360
Penjelasan dengan langkah-langkah:
[tex]f(2x - 5) = x \sqrt{x - 1} \\ 2x - 5 = y \\ 2x = y + 5 \\ x = \frac{y + 5}{2} \\ {f}^{ - 1} (y) = \frac{y + 5}{2} \sqrt{ \frac{y + 5}{2} - 1} \\ {f}^{ - 1} (x) = \frac{x + 5}{2} \sqrt{ \frac{x + 5}{2} - 1 } \\ {f}^{ - 1} (15) = \frac{15 + 5}{2} \sqrt{ \frac{15 + 5}{2} - 1} \\ = 10 \sqrt{10 - 1} \\ = 10 \sqrt{9} \\ = 30 \\ 12 {f}^{ - 1} (15) = 12 \times 30 \\ = 360[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Diketahui
[tex] \sf \: f(2x - 5) = x \sqrt{x - 1} [/tex]
[tex] \sf \: f \: turunan \: pertama \: [/tex]
Ditanya
[tex] \sf12f(15) = ....[/tex]
Jawab
[tex] \sf \: f(2x - 5) = x \sqrt{x - 1} [/tex]
[tex] \sf \: f(x) = ( \frac{x + 5}{2} ) \sqrt{ \frac{x + 5}{2} - 1 } [/tex]
[tex] \sf \: f(x) = ( \frac{x + 5}{2} ) \sqrt{ \frac{x + 5 - 1}{2} } [/tex]
[tex] \sf \: \: f(x) = ( \frac{x + 5}{2} ) \sqrt{ \frac{x + 3}{2} } [/tex]
[tex] \sf \: f’(x) = \frac{1}{2} \sqrt{ \frac{x + 3}{2} } + \frac{1}{ 2\sqrt{ \frac{x + 3}{2} } } \times \frac{1}{2} ( \frac{x + 5}{2} )[/tex]
[tex] \sf \: f’(15) = \frac{14}{6} [/tex]
[tex] \sf \:12 f’(15) = 12\frac{14}{6} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: = 28[/tex]
Jawaban:
2f-¹(15) = 360
Penjelasan dengan langkah-langkah:
[tex]f(2x - 5) = x \sqrt{x - 1} \\ 2x - 5 = y \\ 2x = y + 5 \\ x = \frac{y + 5}{2} \\ {f}^{ - 1} (y) = \frac{y + 5}{2} \sqrt{ \frac{y + 5}{2} - 1} \\ {f}^{ - 1} (x) = \frac{x + 5}{2} \sqrt{ \frac{x + 5}{2} - 1 } \\ {f}^{ - 1} (15) = \frac{15 + 5}{2} \sqrt{ \frac{15 + 5}{2} - 1} \\ = 10 \sqrt{10 - 1} \\ = 10 \sqrt{9} \\ = 30 \\ 12 {f}^{ - 1} (15) = 12 \times 30 \\ = 360[/tex]