Respuestas
Explicacion paso a paso
En resumen es solo aplicar las propiedades mostradas y el principio de logaritmo, pero aquí van los pasos:
1. [tex]\log_{\sqrt{5}}(125)=y[/tex]
[tex]125=(\sqrt{5})^y \\ 5^3=(5^{\frac{1}{2}})^y \\ 5^3=5^{\frac{y}{2}} \\ 3=\frac{y}{2} \\ y=6[/tex]
2. [tex]E=2^{\log_3(5).\log_2(3)}+9^{\log_5(4).\log_3(5)}+10^{\log(5)}[/tex]
[tex]E=2^{\log_2(5)}+9^{\log_3(4)}+10^{\log(5)} \\ E=5+2.(4)+5 \\ E=18[/tex]
Recordar: [tex]A^{\log_A(B)}=B[/tex]
3. [tex]\log_4(y)=2 \rightarrow y=16 \ | \ \log_4[\frac{x^2y^2}{16}]=5;\ \forall x>0[/tex]
[tex][\frac{x^2.y^2}{16}]=4^5 \\ x^2.y^2=16.4^5 \\ x^2.16^2=16.4^2.4^3 \\ x^2.16^2=16^2.4^3 \\ x^2=4^3 \\ (x^2)^\frac{1}{2}=(4^3)^\frac{1}{2} \\ x=(2^2)^{\frac{3}{2}}=2^3 \\ x=8[/tex]
4. [tex]\log_4[3.2^{2x^2}-32]=x^2[/tex]
[tex][3.2^{2x^2}-32]=4^{x^2} \\ 3.2^{2x^2}-32=(2^2)^{x^2}=2^{2x^2} \\ 3.2^{2x^2}-2^{2x^2}=32=2^5 \\ 2.2^{2x^2}=2^5 \\ 2^{2x^2}=2^4 \rightarrow 2x^2=4 \\ x^2=2 \\ \therefore C.S.=\{\sqrt{2}; -\sqrt{2}\} \rightarrow \sum_{elementos}=0[/tex]
De nada. ✍(◔◡◔)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuestas
Explicacion paso a paso
En resumen es solo aplicar las propiedades mostradas y el principio de logaritmo, pero aquí van los pasos:
1. [tex]\log_{\sqrt{5}}(125)=y[/tex]
[tex]125=(\sqrt{5})^y \\ 5^3=(5^{\frac{1}{2}})^y \\ 5^3=5^{\frac{y}{2}} \\ 3=\frac{y}{2} \\ y=6[/tex]
2. [tex]E=2^{\log_3(5).\log_2(3)}+9^{\log_5(4).\log_3(5)}+10^{\log(5)}[/tex]
[tex]E=2^{\log_2(5)}+9^{\log_3(4)}+10^{\log(5)} \\ E=5+2.(4)+5 \\ E=18[/tex]
Recordar: [tex]A^{\log_A(B)}=B[/tex]
3. [tex]\log_4(y)=2 \rightarrow y=16 \ | \ \log_4[\frac{x^2y^2}{16}]=5;\ \forall x>0[/tex]
[tex][\frac{x^2.y^2}{16}]=4^5 \\ x^2.y^2=16.4^5 \\ x^2.16^2=16.4^2.4^3 \\ x^2.16^2=16^2.4^3 \\ x^2=4^3 \\ (x^2)^\frac{1}{2}=(4^3)^\frac{1}{2} \\ x=(2^2)^{\frac{3}{2}}=2^3 \\ x=8[/tex]
4. [tex]\log_4[3.2^{2x^2}-32]=x^2[/tex]
[tex][3.2^{2x^2}-32]=4^{x^2} \\ 3.2^{2x^2}-32=(2^2)^{x^2}=2^{2x^2} \\ 3.2^{2x^2}-2^{2x^2}=32=2^5 \\ 2.2^{2x^2}=2^5 \\ 2^{2x^2}=2^4 \rightarrow 2x^2=4 \\ x^2=2 \\ \therefore C.S.=\{\sqrt{2}; -\sqrt{2}\} \rightarrow \sum_{elementos}=0[/tex]
De nada. ✍(◔◡◔)