[tex]\frac{\left(-m\right)^4n^4\left(\left(-m\right)^3\right)^2\left(mn^2\right)^3}{-m^6\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=\frac{\left(-m\right)^4n^4\left(\left(-m\right)^3\right)^2m^3n^6}{-m^6\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=\frac{\left(-m\right)^4n^4\left(\left(-m\right)^3\right)^2n^6}{-m^3\left(\left(-n\right)^2\right)^5}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \left(-a\right)^n=a^n,\:\quad \mathrm{si\:}n\mathrm{\:es\:par}[/tex]
[tex]\left(-m\right)^4=m^4[/tex]
[tex]=\frac{m^4n^4\left(\left(-m\right)^3\right)^2n^6}{-m^3\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=\frac{mn^4\left(\left(-m\right)^3\right)^2n^6}{-\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=-m^7[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\frac{\left(-m\right)^4n^4\left(\left(-m\right)^3\right)^2\left(mn^2\right)^3}{-m^6\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=\frac{\left(-m\right)^4n^4\left(\left(-m\right)^3\right)^2m^3n^6}{-m^6\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=\frac{\left(-m\right)^4n^4\left(\left(-m\right)^3\right)^2n^6}{-m^3\left(\left(-n\right)^2\right)^5}[/tex]
[tex]\mathrm{Aplicar\:las\:leyes\:de\:los\:exponentes}:\quad \left(-a\right)^n=a^n,\:\quad \mathrm{si\:}n\mathrm{\:es\:par}[/tex]
[tex]\left(-m\right)^4=m^4[/tex]
[tex]=\frac{m^4n^4\left(\left(-m\right)^3\right)^2n^6}{-m^3\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=\frac{mn^4\left(\left(-m\right)^3\right)^2n^6}{-\left(\left(-n\right)^2\right)^5}[/tex]
[tex]=-m^7[/tex]