[tex]t = \sqrt{ { {m}^{2} - ( ({}^{} a - b )\div 2)}^{2} } \\ \sqrt{ {25}^{2} - ((50 - 36) \div 2) {}^{2} } \\ \sqrt{ {25}^{2} - {7}^{2} } = \sqrt{625 - 49} \\ \sqrt{576} = 24 \\ \\ luas \: trapesium \\ \frac{1}{2} \times t(a + b) \\ \frac{1}{2} \times 24(50 + 36) \\ 12(86) \\ 1.032 \: {cm}^{2} \: (b)[/tex]
√25² - (50 - 36)/2)²
= √(25(25) - (14/2)²
= √625 - 7²
= √625 - (7(7)
= √625 - 49
= √576
= √24²
= 24 CM
LP = (1/2(24(50 + 36)
= (1/2(24(86)
= (1/2(2.064)
= 2.064/2
= 1.032 CM²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
[tex]t = \sqrt{ { {m}^{2} - ( ({}^{} a - b )\div 2)}^{2} } \\ \sqrt{ {25}^{2} - ((50 - 36) \div 2) {}^{2} } \\ \sqrt{ {25}^{2} - {7}^{2} } = \sqrt{625 - 49} \\ \sqrt{576} = 24 \\ \\ luas \: trapesium \\ \frac{1}{2} \times t(a + b) \\ \frac{1}{2} \times 24(50 + 36) \\ 12(86) \\ 1.032 \: {cm}^{2} \: (b)[/tex]
√25² - (50 - 36)/2)²
= √(25(25) - (14/2)²
= √625 - 7²
= √625 - (7(7)
= √625 - 49
= √576
= √24²
= 24 CM
LP = (1/2(24(50 + 36)
= (1/2(24(86)
= (1/2(2.064)
= 2.064/2
= 1.032 CM²