Y =2x - x^2 dan y = x - 2, substitusikan 2x - x^2 = x - 2 x^2 - x - 2 = 0 (x - 2)(x + 1) = 0 x = -1 atau x = 2, daerah intgral L = int (-x^2 + x + 2) dx L = -(1/3)x^3 + (1/2)x^2 + 2x masukan x = -1 sampai x = 2 L = -(1/3)(2^3) + (1/2)(2^2) + 2(2) - (1/3 + 1/2 - 2) = 9/2 satuan luas
Verified answer
Y =2x - x^2 dan y = x - 2, substitusikan2x - x^2 = x - 2
x^2 - x - 2 = 0
(x - 2)(x + 1) = 0
x = -1 atau x = 2, daerah intgral
L = int (-x^2 + x + 2) dx
L = -(1/3)x^3 + (1/2)x^2 + 2x
masukan x = -1 sampai x = 2
L = -(1/3)(2^3) + (1/2)(2^2) + 2(2) - (1/3 + 1/2 - 2)
= 9/2 satuan luas
periksa lagi