Limit
lim (x→∞) ³√(ax³ + bx² + cx + d) - ³√(ax³ + px² + qx + r) = (b - p)/(3 ³√a²)
lim (x→∞) ³√(x³ - 2x²) - x - 1
= lim (x→∞) ³√(x³ - 2x²) - ³√(x + 1)³
= lim (x→∞) ³√(x³ - 2x²) - ³√(x³ + 3x² + 3x + 1)
= (b - p)/(3 ³√a²)
= (-2 - 3)/(3 ³√1²)
= -5/3 ✔
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Limit
lim (x→∞) ³√(ax³ + bx² + cx + d) - ³√(ax³ + px² + qx + r) = (b - p)/(3 ³√a²)
lim (x→∞) ³√(x³ - 2x²) - x - 1
= lim (x→∞) ³√(x³ - 2x²) - ³√(x + 1)³
= lim (x→∞) ³√(x³ - 2x²) - ³√(x³ + 3x² + 3x + 1)
= (b - p)/(3 ³√a²)
= (-2 - 3)/(3 ³√1²)
= -5/3 ✔