Jawab:
[tex]\displaystyle \lim_{x\to1} \:\frac{x+1}{2x^{2} -4x} = \bold{-1}[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to1} \:\frac{x+1}{2x^{2} -4x}[/tex]
[tex]= \displaystyle \lim_{x\to1} \:\frac{x+1}{2x(x -2)}[/tex]
[tex]= \displaystyle \frac{1+1}{2(1)(1 -2)}[/tex]
[tex]= \displaystyle \frac{2}{2(-1)}[/tex]
[tex]= \displaystyle \frac{2}{-2}[/tex]
[tex]= \displaystyle \bold{-1}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
[tex]\displaystyle \lim_{x\to1} \:\frac{x+1}{2x^{2} -4x} = \bold{-1}[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to1} \:\frac{x+1}{2x^{2} -4x}[/tex]
[tex]= \displaystyle \lim_{x\to1} \:\frac{x+1}{2x(x -2)}[/tex]
[tex]= \displaystyle \frac{1+1}{2(1)(1 -2)}[/tex]
[tex]= \displaystyle \frac{2}{2(-1)}[/tex]
[tex]= \displaystyle \frac{2}{-2}[/tex]
[tex]= \displaystyle \bold{-1}[/tex]