" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
c1 = c2 + 7
h^2 = c1^2 + c2^2
17^2 = (c2 + 7)^2 + c2^2
289 = c2^2 + 14c2 + 49 + c2^2
289 = 2c^2 + 14c2 + 49
2c^2 + 14c2 - 240 = 0
Se resuelve por la cuadrática
c2 = [ -b ± √(b2-4ac) ] / 2a
c2 = [ -14 ± √(142-4×2×-240) ] / 2(2)
c2 = [ -14 ± √2116 ] / 4
c2 = [ -14 ± 46 ] / 4
c2 = 8
c1 = c2 + 7
c1 = 8 + 7
c1 = 15
cateto menor: x
hipotenusa: 17
aplicando teorema de Pitágoras:
(cateto mayor)² + (cateto menor)² = (hipotenusa)²
reemplazando:
(x+7)² + (x)² = 17²
x²+14x+49 + x² = 289
2x² + 14x +49 - 289 =0
2x² + 14x- 240 =0 simplificando
x² +7x - 120 =0
(x+15)(x-8) =0 factorizando
x+15=0| x-8=0
x = -15.| x=8
tomamos para x el valor positivo. x=8
reemplazando:
cateto mayor: 8+7 =15cm
cateto menor: 8cm
hipotenusa: 17cm
es el triángulo pitagórico de 8,15,17. :)