la empresa decidió construir un nuevo modelo de nevera manteniendo el volumen de la anterior y en el que la proporción entre el volumen del congelador y el conservador sea de 1 a 3 respectivamente. Analizado está proporción se puede afirmar que en el nuevo modelo:
El volumen de un cono se expresa mediante la fórmula:
V = (1/3)*π*r²*h
Donde:
V = volumen del cono
r radio de la base
h = altura
Supongamos que tenemos dos situaciones: Una, un cono con altura h₁ y radio de la base r₁, denominado cono 1 y dos , un cono con una nueva altura h₂ y nuevo radio de la base r₂, denominado cono 2, entonces sus volúmenes respectivos son:
V₁ = (1/3)*π*r₁²*h₁
V₂ = (1/3)*π*r₂²*h₂
Aplicando las condiciones del enunciado, la altura del cono 2 debe ser dos veces la altura del cono 1 y el radio de la base del cono 2 debe ser la mitad del radio de la base del cono 1, matemáticamente esto se expresa así:
h₂ = 2h₁
r₂ = r₁/2
Reemplazamos estas ecuaciones en la ecuación del volumen del cono 2, obteniendo:
V₂ = (1/3)*π*(r₁/2)²*(2h₁)
Desarrollamos los factores que correspondan y:
V₂ = (1/3)*π*(r₁²/4)*(2h₁)
V₂ = (1/2)*(1/3)*π*r₁²*h₁
Pero (1/3)*π*r₁²*h₁ (subrayado con negrita en la última ecuación), es igual a V₁, entonces reemplazando (1/3)*π*r₁²*h₁ = V₁ queda lo siguiente:
V₂ = (1/2)*V₁
Es decir, al aumentar la altura al doble y disminuir el radio de la base a la mitad, el volumen resultante V₂ es la mitad del volumen original V₁.
Respuesta:
El volumen de un cono se expresa mediante la fórmula:
V = (1/3)*π*r²*h
Donde:
V = volumen del cono
r radio de la base
h = altura
Supongamos que tenemos dos situaciones: Una, un cono con altura h₁ y radio de la base r₁, denominado cono 1 y dos , un cono con una nueva altura h₂ y nuevo radio de la base r₂, denominado cono 2, entonces sus volúmenes respectivos son:
V₁ = (1/3)*π*r₁²*h₁
V₂ = (1/3)*π*r₂²*h₂
Aplicando las condiciones del enunciado, la altura del cono 2 debe ser dos veces la altura del cono 1 y el radio de la base del cono 2 debe ser la mitad del radio de la base del cono 1, matemáticamente esto se expresa así:
h₂ = 2h₁
r₂ = r₁/2
Reemplazamos estas ecuaciones en la ecuación del volumen del cono 2, obteniendo:
V₂ = (1/3)*π*(r₁/2)²*(2h₁)
Desarrollamos los factores que correspondan y:
V₂ = (1/3)*π*(r₁²/4)*(2h₁)
V₂ = (1/2)*(1/3)*π*r₁²*h₁
Pero (1/3)*π*r₁²*h₁ (subrayado con negrita en la última ecuación), es igual a V₁, entonces reemplazando (1/3)*π*r₁²*h₁ = V₁ queda lo siguiente:
V₂ = (1/2)*V₁
Es decir, al aumentar la altura al doble y disminuir el radio de la base a la mitad, el volumen resultante V₂ es la mitad del volumen original V₁.
Explicación paso a paso:
coronita plx
Respuesta:
es la B jsu8whwbwiwojwhhwhwhwhhwjwuiwkwjwjjwjwbwbbwbwbjwjwuwiwi