" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Donde: X1 = 2; Y1 = 4; X2 = 3; Y2 = 6
Podemos usar la siguiente ecuacion:
(X - X1)/(X2 - X1) = (Y - Y1)/(Y2 - Y1)
[(X - 2)/(3 - 2)] = [(Y - 4)/(6 - 4)]
(X - 2)/(1) = (Y - 4)/(2)
2(X - 2) = 1(Y - 4)
2X - 4 = Y - 4
Y = 2X - 4 + 4
Y = 2X
Para P1 ( -2, 4) y P2 (2, 5)
X1 = -2; Y1 = 4; X2 = 2; Y2 = 5
[(X - X1)/(X2 - X1)] = [(Y - Y1)/(Y2 - Y1)]
[(X - (-2))/(2 - (-2))] = [(Y - 4)/(5 - 4)]
[(X + 2)/(2 + 2)] = [(Y - 4)/(1)]
(X + 2)/(4) = (Y - 4)/(1)
1(X + 2) = 4(Y - 4)
X + 2 = 4Y - 16
X + 2 + 16 = 4Y
4Y = X + 18 (Divido toda la expresion entre 4)
Y = X/4 + 18/4
Y = 0.25X + 4.5
Para P1 ( 2, -3) y P2 (-4, 3)
X1 = 2; Y1 = -3; X2 = -4; Y2 = 3
Para este voy a usar otra forma de sacar la ecuacion de la recta
Y - Y1 = m(X - X1)
Donde m = (Y2 - Y1)/(X2 - X1)
m = (3 - (-3))/(-4 - 2)
m = (3 + 3)/(-6)
m = 6/-6
m = -1
Ahora reemplazo en
Y - Y1 = m(X - X1)
Donde: m = -1; X1 = 2; Y1 = -3
Y - (-3) = -1(X - 2)
Y + 3 = -X + 2
Y = -X + 2 - 3
Y = -X - 1