Al resolver el problema se obtiene, que el valor de la diferencia es:
k₂ - k₁ = -25/7
Si, dos rectas son paralelas se cumple: m₁ = m₂
L₁: kx + (k - 1)y - 18 = 0
Despejar y:
y = (18 - kx)/(k - 1)
Siendo: m₁ = -k/(k-1)
L₂: 4x + 3y + 7 = 0
y = (-7 - 4x)/3
siendo: m₂= -4/3
Igualar;
-k/(k-1) = -4/3
-3k = -4(k-1)
3k = 4k - 4
k₁ = 4
Si, dos rectas son perpendiculares se cumple: m₁ = -1/m₂
sustituir;
-k/(k-1) = -1/(-4/3)
-k/(k-1) = 3/4
-4k = 3(k-1)
-4k = 3k - 3
7k = 3
k₂ = 3/7
Sumar;
k₂ - k₁ = 3/7 - 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Al resolver el problema se obtiene, que el valor de la diferencia es:
k₂ - k₁ = -25/7
Si, dos rectas son paralelas se cumple: m₁ = m₂
L₁: kx + (k - 1)y - 18 = 0
Despejar y:
y = (18 - kx)/(k - 1)
Siendo: m₁ = -k/(k-1)
L₂: 4x + 3y + 7 = 0
Despejar y:
y = (-7 - 4x)/3
siendo: m₂= -4/3
Igualar;
-k/(k-1) = -4/3
-3k = -4(k-1)
3k = 4k - 4
k₁ = 4
Si, dos rectas son perpendiculares se cumple: m₁ = -1/m₂
L₁: kx + (k - 1)y - 18 = 0
Despejar y:
y = (18 - kx)/(k - 1)
Siendo: m₁ = -k/(k-1)
L₂: 4x + 3y + 7 = 0
Despejar y:
y = (-7 - 4x)/3
siendo: m₂= -4/3
sustituir;
-k/(k-1) = -1/(-4/3)
-k/(k-1) = 3/4
-4k = 3(k-1)
-4k = 3k - 3
7k = 3
k₂ = 3/7
Sumar;
k₂ - k₁ = 3/7 - 4
k₂ - k₁ = -25/7