Jawab:
g(x) = -1/2x + 20
Penjelasan dengan langkah-langkah:
bentuk persamaan garis:
y = mx + c
---
f(x) = 2x + 5
y = 2x + 5
m1 = 2 <--- gradien f(x)
f(x) tegak lurus dengan g(x). Jadi gradien (m2) dari g(x):
m1 . m2 = -1
2 . m2 = -1
m2 = -1/2
nilai c:
g(x) = m2x + c
y = -1/2x + c
17 = -1/2(6) + c
17 = -3 + c
c = 17 + 3
c = 20
Jadi, garis g(x) = -1/2x + 20
Materi : Persamaan Garis Lurus
Garis f(x) : y = 2x + 5
y = 2x + 5 [ Gradien / m = 2 ]
Titik ( x¹ = 6 , y¹ = 17 ) dan m = 2
Ket : TEGAK LURUS ( -1/m )
________________________/
y - y¹ = ( -1/m )( x - x¹ )
y - 17 = - ½( x - 6 )
2( y - 17 ) = - ( x - 6 )
2y - 34 = - x + 6
2y = - x + 40
y = - ½x + 20 [ g(x) = -½x + 20 ]
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
g(x) = -1/2x + 20
Penjelasan dengan langkah-langkah:
bentuk persamaan garis:
y = mx + c
---
f(x) = 2x + 5
y = 2x + 5
m1 = 2 <--- gradien f(x)
---
f(x) tegak lurus dengan g(x). Jadi gradien (m2) dari g(x):
m1 . m2 = -1
2 . m2 = -1
m2 = -1/2
---
nilai c:
g(x) = m2x + c
y = -1/2x + c
17 = -1/2(6) + c
17 = -3 + c
c = 17 + 3
c = 20
Jadi, garis g(x) = -1/2x + 20
Materi : Persamaan Garis Lurus
Garis f(x) : y = 2x + 5
Gradien
y = 2x + 5 [ Gradien / m = 2 ]
Langsung Saja
Titik ( x¹ = 6 , y¹ = 17 ) dan m = 2
Ket : TEGAK LURUS ( -1/m )
________________________/
y - y¹ = ( -1/m )( x - x¹ )
y - 17 = - ½( x - 6 )
2( y - 17 ) = - ( x - 6 )
2y - 34 = - x + 6
2y = - x + 40
y = - ½x + 20 [ g(x) = -½x + 20 ]
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]