Penjelasan dengan langkah-langkah:
[tex]f(x) = {5}^{x - 1} - 3 \\ \\x = {5}^{y - 1} - 3 \\ {5}^{y - 1} - 3 = x \\ {5}^{y - 1} = x + 3 \\gunakan \: sifat \: logaritma \: \\ {a}^{m} = n\to \: m = {}^{a}log \: n \\ y - 1 = {}^{5} log \: (x + 3) \\ y = {}^{5} log \: (x + 3) + 1 \\ {f}^{ - 1} (x) = {}^{5} log \: (x + 3) \\ y = {}^{5} log \: (x + 3) + 1[/tex]
[tex]\tt f(x)=5^{x-1}-3\\\\y=5^{x-1}-3\\\\5^{y-1}-3+3=x+3\\\\log_5(5^{y-1})=log_5(x+3)\\\\y-1+1=log_5(x+3)+1 \\\\y+0=log_5(x+3)+1\\\\f^{-1}(x)=log_5(x+3)+1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
[tex]f(x) = {5}^{x - 1} - 3 \\ \\x = {5}^{y - 1} - 3 \\ {5}^{y - 1} - 3 = x \\ {5}^{y - 1} = x + 3 \\gunakan \: sifat \: logaritma \: \\ {a}^{m} = n\to \: m = {}^{a}log \: n \\ y - 1 = {}^{5} log \: (x + 3) \\ y = {}^{5} log \: (x + 3) + 1 \\ {f}^{ - 1} (x) = {}^{5} log \: (x + 3) \\ y = {}^{5} log \: (x + 3) + 1[/tex]
Penjelasan dengan langkah-langkah:
[tex]\tt f(x)=5^{x-1}-3\\\\y=5^{x-1}-3\\\\5^{y-1}-3+3=x+3\\\\log_5(5^{y-1})=log_5(x+3)\\\\y-1+1=log_5(x+3)+1 \\\\y+0=log_5(x+3)+1\\\\f^{-1}(x)=log_5(x+3)+1[/tex]