..
Sifat-Sifat Eksponen:
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
[tex]\begin{aligned} 9^2 &= 3^n \\ (3^2)^2 &= 3^n \\3^4 &= 3^n \\ 4 &= n \end{aligned}[/tex]
Nilai n dari persamaan diatas adalah [tex]n=4[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 06 - 05 - 2023}}[/tex]
Jawab:
9² = 3ⁿ
n = 4
Penjelasan dengan langkah-langkah:
³log 9² = n
2 . ³log 9 = n
2 . ³log 3² = n
2 . 2 . ³log 3 = n
2 . 2 . 1 = n
4 = n
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Eksponen
..
Sifat-Sifat Eksponen:
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} 9^2 &= 3^n \\ (3^2)^2 &= 3^n \\3^4 &= 3^n \\ 4 &= n \end{aligned}[/tex]
Kesimpulan
Nilai n dari persamaan diatas adalah [tex]n=4[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 06 - 05 - 2023}}[/tex]
Jawab:
9² = 3ⁿ
n = 4
Penjelasan dengan langkah-langkah:
9² = 3ⁿ
³log 9² = n
2 . ³log 9 = n
2 . ³log 3² = n
2 . 2 . ³log 3 = n
2 . 2 . 1 = n
4 = n