persamaan garis singgung lingkaran
Titik singgung P(-1,4)
r = √((-1)² + 4²) = √17
gradien garis normal, m1 = y/x = 4/(-1) = -4
gradien garis singgung, m2 = -1/m1 = 1/4
PGSL dg m = 1/4 :
y = mx ± r√(1 + m²)
y = 0,25x ± √17 × √(1 + (1/4)²)
y = 0,25x ± √17 × 1/4 √17
y = 0,25x ± 17/4
y = 0,25x ± 4,25
PGSL di P(-1,4) :
y = 0,25x + 4,25
Penjelasan dengan langkah-langkah:
given :
asked: the equation of the tangent to the circle at P
answer :
formula to find equation of the tangent to the circle is :
[tex]\rm\boxed{x.x_1+y.y_1=r^2}[/tex]
then we should find a r (radius)
we can find a r (radius) use pythagoras formula
r = [tex]\sqrt{x_1^2+y_1^2}[/tex]
r = [tex]\sqrt{(-1)^2+(4)^2}[/tex]
r = [tex]\sqrt{1+16}[/tex]
r = [tex]\sqrt{17}[/tex]
So the equation of the tangent to the circle is
[tex]x. x_1 + y.y_1 = {r}^{2} [/tex]
[tex]x. - 1 + y.4 = ( \sqrt{17})^{2} [/tex]
[tex] - 1x + 4y = 17[/tex]
change that equation in the y=mx+c
-1x + 4y = 17
4y = 1x + 17
y = ¼x + ¼17
•Then the equation of the tangent to the circle at P is y = ¼x + ¼17
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
persamaan garis singgung lingkaran
Titik singgung P(-1,4)
r = √((-1)² + 4²) = √17
gradien garis normal, m1 = y/x = 4/(-1) = -4
gradien garis singgung, m2 = -1/m1 = 1/4
PGSL dg m = 1/4 :
y = mx ± r√(1 + m²)
y = 0,25x ± √17 × √(1 + (1/4)²)
y = 0,25x ± √17 × 1/4 √17
y = 0,25x ± 17/4
y = 0,25x ± 4,25
PGSL di P(-1,4) :
y = 0,25x + 4,25
Penjelasan dengan langkah-langkah:
given :
asked: the equation of the tangent to the circle at P
answer :
formula to find equation of the tangent to the circle is :
[tex]\rm\boxed{x.x_1+y.y_1=r^2}[/tex]
then we should find a r (radius)
we can find a r (radius) use pythagoras formula
r = [tex]\sqrt{x_1^2+y_1^2}[/tex]
r = [tex]\sqrt{(-1)^2+(4)^2}[/tex]
r = [tex]\sqrt{1+16}[/tex]
r = [tex]\sqrt{17}[/tex]
So the equation of the tangent to the circle is
[tex]x. x_1 + y.y_1 = {r}^{2} [/tex]
[tex]x. - 1 + y.4 = ( \sqrt{17})^{2} [/tex]
[tex] - 1x + 4y = 17[/tex]
change that equation in the y=mx+c
-1x + 4y = 17
4y = 1x + 17
y = ¼x + ¼17
•Then the equation of the tangent to the circle at P is y = ¼x + ¼17