Jawaban:
Diketahui :
a = p
b = -4
S6 = n/2 (2a + (n - 1)b) = 132
S6 = 6/2 (2p + (6 - 1)-4) = 132
S6 = 3 (2p + (5)-4) = 132
S6 = 3 (2p - 20) = 132
S6 = 6p - 60 = 132
6p - 60 = 132
6p = 132 + 60
6p = 192
p = 32
S4 = 4/2 (2(32) + (4 - 1)-4)
= 2 (64 + (3)-4)
= 2 (64 - 12)
= 2 (52)
= 104
Semoga membantu
Menentukan beda:
Sn = n/2(2a + (n - 1)b)
132 = 6/2(2p + (6 - 1)-4)
132 = 3(2p - 20)
132 = 6p - 60
p = 192/6
..
Suku pertama = p = 32
Maka,
S4 = 4/2(2(32) + (4 - 1)-4)
S4 = 2(64 - 12)
S4 = 2(52)
S4 = 104
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
Diketahui :
a = p
b = -4
S6 = n/2 (2a + (n - 1)b) = 132
S6 = 6/2 (2p + (6 - 1)-4) = 132
S6 = 3 (2p + (5)-4) = 132
S6 = 3 (2p - 20) = 132
S6 = 6p - 60 = 132
6p - 60 = 132
6p = 132 + 60
6p = 192
p = 32
S4 = 4/2 (2(32) + (4 - 1)-4)
= 2 (64 + (3)-4)
= 2 (64 - 12)
= 2 (52)
= 104
Semoga membantu
Menentukan beda:
Sn = n/2(2a + (n - 1)b)
132 = 6/2(2p + (6 - 1)-4)
132 = 3(2p - 20)
132 = 6p - 60
6p = 132 + 60
6p = 192
p = 192/6
p = 32
..
Suku pertama = p = 32
Maka,
S4 = 4/2(2(32) + (4 - 1)-4)
S4 = 2(64 - 12)
S4 = 2(52)
S4 = 104