Odpowiedź:
f ) [tex]\sqrt{6} = \sqrt{3*2} \\[/tex] = √3*√2
= [tex]\frac{3*\sqrt{3}*\sqrt{2} - 3 \sqrt{2} }{\sqrt{3} - 1}[/tex] [tex]= \frac{3\sqrt{2}*(\sqrt{3} - 1 )}{\sqrt{3} - 1 } = 3\sqrt{2}[/tex]
g )
[tex]\sqrt{10} = \sqrt{5*2} = \sqrt{5} *\sqrt{2}[/tex]
= [tex]\frac{2*\sqrt{5} *\sqrt{2} - 2\sqrt{2} }{2\sqrt{2} } - \sqrt{5} =[/tex] [tex]\frac{2\sqrt{2}*( \sqrt{5} - 1) }{2\sqrt{2} } - \sqrt{5} = ( \sqrt{5} - 1) - \sqrt{5} = - 1[/tex]
h )
[tex]\sqrt{15} = \sqrt{5*3} = \sqrt{5} *\sqrt{3}[/tex]
= [tex]\frac{4*\sqrt{5} *\sqrt{3} - 2\sqrt{3} }{2\sqrt{3} } =[/tex][tex]\frac{2\sqrt{3}*(2\sqrt{5} - 1 )}{2\sqrt{3} } = 2\sqrt{5} - 1[/tex]
Szczegółowe wyjaśnienie:
Skracamy licznik z mianownikiem.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
f ) [tex]\sqrt{6} = \sqrt{3*2} \\[/tex] = √3*√2
= [tex]\frac{3*\sqrt{3}*\sqrt{2} - 3 \sqrt{2} }{\sqrt{3} - 1}[/tex] [tex]= \frac{3\sqrt{2}*(\sqrt{3} - 1 )}{\sqrt{3} - 1 } = 3\sqrt{2}[/tex]
g )
[tex]\sqrt{10} = \sqrt{5*2} = \sqrt{5} *\sqrt{2}[/tex]
= [tex]\frac{2*\sqrt{5} *\sqrt{2} - 2\sqrt{2} }{2\sqrt{2} } - \sqrt{5} =[/tex] [tex]\frac{2\sqrt{2}*( \sqrt{5} - 1) }{2\sqrt{2} } - \sqrt{5} = ( \sqrt{5} - 1) - \sqrt{5} = - 1[/tex]
h )
[tex]\sqrt{15} = \sqrt{5*3} = \sqrt{5} *\sqrt{3}[/tex]
= [tex]\frac{4*\sqrt{5} *\sqrt{3} - 2\sqrt{3} }{2\sqrt{3} } =[/tex][tex]\frac{2\sqrt{3}*(2\sqrt{5} - 1 )}{2\sqrt{3} } = 2\sqrt{5} - 1[/tex]
Szczegółowe wyjaśnienie:
Skracamy licznik z mianownikiem.