" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
maksimum y' = 0
3x^2 - 6x = 0
x^2 - 2x = 0
x (x - 2) = 0
x = 0 atau x = 2
y = f(x) = x^3 - 3x^2
y = f(0) = (0)^3 - 3(0)^2 = 0
y = f(2) = (2)^3 - 3(2)^2 = 8 - 12 = -4
Maka, koordinat titik stasioner maksimum kurva tersebut adalah (0,0)