f(x) = ½x² - 4x + 6
a = ½, b = -4, c = 6
Koordinat titik balik:
[tex]\begin{aligned} \Rightarrow& \ \sf(x_p,y_p) \\ \Rightarrow&\sf \left(-\frac{b}{2a},-\frac{D}{4a}\right) \\ \Rightarrow&\sf \left(-\frac{b}{2a},-\frac{b^2 - 4ac}{4a}\right) \\ \Rightarrow&\sf \left(-\frac{(-4)}{2(^1\!/\!_2)},-\frac{(-4)^2 - 4(^1\!/\!_2)(6)}{4(^1\!/\!_2)}\right) \\ \Rightarrow&\sf \left(-\frac{(-4)}{1},-\frac{16 - 12}{2}\right) \\ \Rightarrow&\sf \left(-(-4),-\frac{4}{2}\right) \\ \Rightarrow& \ \sf (4,-2) \end{aligned}[/tex]
⌗SDaze ⋆࿐໋₊
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
f(x) = ½x² - 4x + 6
a = ½, b = -4, c = 6
Koordinat titik balik:
[tex]\begin{aligned} \Rightarrow& \ \sf(x_p,y_p) \\ \Rightarrow&\sf \left(-\frac{b}{2a},-\frac{D}{4a}\right) \\ \Rightarrow&\sf \left(-\frac{b}{2a},-\frac{b^2 - 4ac}{4a}\right) \\ \Rightarrow&\sf \left(-\frac{(-4)}{2(^1\!/\!_2)},-\frac{(-4)^2 - 4(^1\!/\!_2)(6)}{4(^1\!/\!_2)}\right) \\ \Rightarrow&\sf \left(-\frac{(-4)}{1},-\frac{16 - 12}{2}\right) \\ \Rightarrow&\sf \left(-(-4),-\frac{4}{2}\right) \\ \Rightarrow& \ \sf (4,-2) \end{aligned}[/tex]
⌗SDaze ⋆࿐໋₊