Dane:
[tex]a_1=9[/tex]
[tex]q=\dfrac{1}{3}[/tex]
[tex]n=4[/tex]
Szukane:
[tex]S_4[/tex]
Wzór:
[tex]S_n=a_1\dfrac{1-q^n}{1-q}[/tex]
Rozwiązanie:
[tex]S_4=9\cdot\dfrac{1-\left(\dfrac{1}{3}\right)^4}{1-\dfrac{1}{3}}=9\cdot\dfrac{1-\dfrac{1}{81}}{\dfrac{2}{3}}=9\cdot\dfrac{\dfrac{80}{81}}{\dfrac{2}{3}}=9\cdot\dfrac{80}{81}\cdot\dfrac{3}{2}=1\cdot\dfrac{40}{3}\cdot\dfrac{1}{1}=\dfrac{40}{3}=13\dfrac{1}{3}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Dane:
[tex]a_1=9[/tex]
[tex]q=\dfrac{1}{3}[/tex]
[tex]n=4[/tex]
Szukane:
[tex]S_4[/tex]
Wzór:
[tex]S_n=a_1\dfrac{1-q^n}{1-q}[/tex]
Rozwiązanie:
[tex]S_4=9\cdot\dfrac{1-\left(\dfrac{1}{3}\right)^4}{1-\dfrac{1}{3}}=9\cdot\dfrac{1-\dfrac{1}{81}}{\dfrac{2}{3}}=9\cdot\dfrac{\dfrac{80}{81}}{\dfrac{2}{3}}=9\cdot\dfrac{80}{81}\cdot\dfrac{3}{2}=1\cdot\dfrac{40}{3}\cdot\dfrac{1}{1}=\dfrac{40}{3}=13\dfrac{1}{3}[/tex]