Skorzystamy ze wzoru
[tex]\text{tg}x=\frac{\sin x}{\cos x}[/tex]
Zatem
[tex]W=\frac{\cos^2x-\sin^2x}{\cos x\sin x}=\frac{\cos^2x}{\cos x\sin x}-\frac{\sin^2x}{\cos x\sin x}=\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}=\frac{1}{\frac{\sin x}{\cos x}}-\frac{\sin x}{\cos x}=\frac{1}{\text{tg}x}-\text{tg}x[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Skorzystamy ze wzoru
[tex]\text{tg}x=\frac{\sin x}{\cos x}[/tex]
Zatem
[tex]W=\frac{\cos^2x-\sin^2x}{\cos x\sin x}=\frac{\cos^2x}{\cos x\sin x}-\frac{\sin^2x}{\cos x\sin x}=\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}=\frac{1}{\frac{\sin x}{\cos x}}-\frac{\sin x}{\cos x}=\frac{1}{\text{tg}x}-\text{tg}x[/tex]