#F
1. ∫ 2x(x²-9)⁵ dx =
= (2x)(2x) (1/6)(x² -9)⁶ + c
= 1/6 (x² -9)⁶ + c
2. ∫(x + 6)/(x + 4) dx
= ∫2 /(x + 4) + 1 dx
= 2 ln |x +4| + x + c
3) ∫ 4(x - 3)²/(x)⁵ dx
= ∫ 4x⁻⁵ (x - 3)² dx
= ∫x⁻⁵ (x² - 6x + 9) dx
= ∫ x⁻³ - 6x⁻⁴ + 9x⁻⁵
= - 1/2 x⁻² + 2 x⁻³ - 9/4 x⁻⁴ + c
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
#F
1. ∫ 2x(x²-9)⁵ dx =
= (2x)(2x) (1/6)(x² -9)⁶ + c
= 1/6 (x² -9)⁶ + c
2. ∫(x + 6)/(x + 4) dx
= ∫2 /(x + 4) + 1 dx
= 2 ln |x +4| + x + c
3) ∫ 4(x - 3)²/(x)⁵ dx
= ∫ 4x⁻⁵ (x - 3)² dx
= ∫x⁻⁵ (x² - 6x + 9) dx
= ∫ x⁻³ - 6x⁻⁴ + 9x⁻⁵
= - 1/2 x⁻² + 2 x⁻³ - 9/4 x⁻⁴ + c