Penjelasan dengan langkah-langkah:
Aplikasi Integral
4) y = 0
y = x³-16x
cari batas batasnya
x³-16x = 0
x(x²-16) = 0
diperoleh
x = 0 , dan
x² - 16 = 0
x² = 16
x = √16
x = ±4 , cari positifnya gpp nanti tinggal hasil × 2
maka batasnya [ 0 4 ]
Maka luas daerah
= 2(ʃ x³-16x dx) [ 0 4]
= 2(¼x⁴-8x²) [ 0 4 ]
= 2((¼(4)⁴-8(4)²)-(¼(0)⁴-8(0)²)
= 2((64-108)-0)
= | 2(-64) |
= 128 satuan luas ✓
5) y = x²-4
y = -x-2
x²-4 = -x-2
x²+x-4+2 = 0
x²+x-2 = 0
(x+2)(x-1) = 0
maka diperoleh
x = -2 dan x = 1 , batasnya [ -2 1 ]
= ʃ x²+x-2 dx [ -2 1 ]
= ⅓x³-½x²-2x [ -2 1 ]
= (⅓(1)³-½(1)²-2(1)) - (⅓(-2)³-½(-2)²-2(-2))
= (⅓-½-2) - (-8/3 - 2 - 4)
= | -9/2 |
= 9/2 satuan luas ✓
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
Aplikasi Integral
4) y = 0
y = x³-16x
cari batas batasnya
x³-16x = 0
x(x²-16) = 0
diperoleh
x = 0 , dan
x² - 16 = 0
x² = 16
x = √16
x = ±4 , cari positifnya gpp nanti tinggal hasil × 2
maka batasnya [ 0 4 ]
Maka luas daerah
= 2(ʃ x³-16x dx) [ 0 4]
= 2(¼x⁴-8x²) [ 0 4 ]
= 2((¼(4)⁴-8(4)²)-(¼(0)⁴-8(0)²)
= 2((64-108)-0)
= | 2(-64) |
= 128 satuan luas ✓
5) y = x²-4
y = -x-2
cari batas batasnya
x²-4 = -x-2
x²+x-4+2 = 0
x²+x-2 = 0
(x+2)(x-1) = 0
maka diperoleh
x = -2 dan x = 1 , batasnya [ -2 1 ]
Maka luas daerah
= ʃ x²+x-2 dx [ -2 1 ]
= ⅓x³-½x²-2x [ -2 1 ]
= (⅓(1)³-½(1)²-2(1)) - (⅓(-2)³-½(-2)²-2(-2))
= (⅓-½-2) - (-8/3 - 2 - 4)
= | -9/2 |
= 9/2 satuan luas ✓