a. Panjang BD : s√2 <= s = 8 <= s√2 nya didapatkan dari pytagoras
BD = 8√2
mencari jarak di x ke BD itu berarti X nya harus di bayang-bayangkan (proyeksikan) ke garis BD , misalnya titik proyeksi X dipanggil Y (Y adalah titik di tengah garis BD)
jarak x ke BD berarti panjang garis XY yang harus dicari
Jarak dari titik Y ke C adalah : YC = 1/2 . s√2 = 4√2
Jarak titik X ke C adalah 1/2 s ( XC = 4)
maka panjang garis XY adalah pytagoras dari XC dan YC :
XY = √4²+(4√2)²
= √4²(1²+(√2)²)
= 4√1+2
XY = 4√3
maka jarak dari titik X ke garis BD adalah 4√3 cm
b. Jarak dari B ke H adalah : s√3 <= dari pytagoras lagi
BH = s√3
BH = 8√3
Misalnya proyeksi titik X ke BH adalah Z , maka jarak titik X ke garis BH adalah XZ , cari panjang XZ
Proyeksikan titik G ke BH (misalnya titik proyeksinya K) , maka GK adalah 1/2.s√3 , GK = 4√3 , dan titik G ke X panjangnya nya GX = 4 cm , maka titik XZ adalah hasil pytagoras GX dan GK
GK = √(4√3)²-4²
= √4²((√3)²-1²))
= 4√3-1
= 4√2
Maka panjang X ke BH adalah 4√2
1 votes Thanks 1
ridhovictor
intinya mencari jarak itu bikin supaya sebuah segitiga terbentuk , dan panjang nya di cari pake pitagoras
ridhovictor
beberapa panjang titik nya juga bisa dicari pake analisa segmen garis
a. Panjang BD : s√2 <= s = 8 <= s√2 nya didapatkan dari pytagoras
BD = 8√2
mencari jarak di x ke BD itu berarti X nya harus di bayang-bayangkan (proyeksikan) ke garis BD , misalnya titik proyeksi X dipanggil Y (Y adalah titik di tengah garis BD)
jarak x ke BD berarti panjang garis XY yang harus dicari
Jarak dari titik Y ke C adalah : YC = 1/2 . s√2 = 4√2
Jarak titik X ke C adalah 1/2 s ( XC = 4)
maka panjang garis XY adalah pytagoras dari XC dan YC :
XY = √4²+(4√2)²
= √4²(1²+(√2)²)
= 4√1+2
XY = 4√3
maka jarak dari titik X ke garis BD adalah 4√3 cm
b. Jarak dari B ke H adalah : s√3 <= dari pytagoras lagi
BH = s√3
BH = 8√3
Misalnya proyeksi titik X ke BH adalah Z , maka jarak titik X ke garis BH adalah XZ , cari panjang XZ
Proyeksikan titik G ke BH (misalnya titik proyeksinya K) , maka GK adalah 1/2.s√3 , GK = 4√3 , dan titik G ke X panjangnya nya GX = 4 cm , maka titik XZ adalah hasil pytagoras GX dan GK
GK = √(4√3)²-4²
= √4²((√3)²-1²))
= 4√3-1
= 4√2
Maka panjang X ke BH adalah 4√2