Materi : Barisan dan Geometri
Pola barisan geometri
√3, 3, 3√3, ...
Suku Pertama = √3 , Rasio = √3
Maka rumus pola : Un = (√3)ⁿ
U10 = (√3)¹⁰ = 3¹⁰/² = 3⁵ = 243
U1 = 64 [ x = 1 , Ux = 64 ]
U4 = 1 [ y = 4 , Uy = 1 ]
r = ( ⁴-¹ )√( 1/64 )
r = ³√(4-³)
r = 4-³/³
r = 4-¹
[ r = ¼ ]
64, 16, 4, 1, ¼, ...
Suku Pertama = 64 , Rasio = ¼
Maka rumus pola : Un = 4-ⁿ+⁴
1, 2, 4, 8, ... [ a = 1 , r = 2 ]
Maka U6 = 2⁶-¹ = 2⁵ = 32
3, 6, 12, 24, ... [ a = 3 , r = 2 ]
Maka U6 = 3(2⁶-¹) = 3(2⁵) = 3(32) = 96
27, 9, 3, 1, ... [ a = 27 , r = ⅓ ]
Maka U6 = 3-⁶+⁴ = 3-² = -⅑
2, -6, 18, -54, ... [ a = 2 , r = -3 ]
Maka U6 = 2(-3)⁶-¹ = 2(-3)⁵ = 2(-243) = -486
4, 12, 36, ...
Suku Pertama = 4 , Rasio = 12/4 = 3
Maka rumus pola : Un = 4(3ⁿ-¹)
Un = a( rⁿ-¹ ) = 4(3ⁿ-¹)
U1 = 5 [ x = 1 , Ux = 5 ]
U3 = 45 [ y = 3 , Uy = 45 ]
r = ( ³-¹ )√(45/5)
r = ²√9
r = √9
[ r = 3 ]
5, 15, 45, 135, ...
Suku Pertama = 5 , Rasio = 3
Maka rumus pola : Un = 5(3ⁿ-¹)
Jika Un = 1.215
5(3ⁿ-¹) = 1.215
3ⁿ-¹ = 1.215
3ⁿ-¹ = 243
3ⁿ-¹ = 3⁵
3ⁿ = 3⁵+¹
3ⁿ = 3⁶
[ n = 6 ] => 1.215 adalah suku ke - 6
Semoga bisa membantu
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Materi : Barisan dan Geometri
Soal Nomor 6
Pola barisan geometri
√3, 3, 3√3, ...
Suku Pertama = √3 , Rasio = √3
Maka rumus pola : Un = (√3)ⁿ
U10 = (√3)¹⁰ = 3¹⁰/² = 3⁵ = 243
Soal Nomor 7
U1 = 64 [ x = 1 , Ux = 64 ]
U4 = 1 [ y = 4 , Uy = 1 ]
Rasio
r = ( ⁴-¹ )√( 1/64 )
r = ³√(4-³)
r = 4-³/³
r = 4-¹
[ r = ¼ ]
Hasil / Result :
Pola barisan geometri
64, 16, 4, 1, ¼, ...
Suku Pertama = 64 , Rasio = ¼
Maka rumus pola : Un = 4-ⁿ+⁴
Soal Nomor 8
Bagian A
1, 2, 4, 8, ... [ a = 1 , r = 2 ]
Maka U6 = 2⁶-¹ = 2⁵ = 32
Bagian B
3, 6, 12, 24, ... [ a = 3 , r = 2 ]
Maka U6 = 3(2⁶-¹) = 3(2⁵) = 3(32) = 96
Bagian C
27, 9, 3, 1, ... [ a = 27 , r = ⅓ ]
Maka U6 = 3-⁶+⁴ = 3-² = -⅑
Bagian D
2, -6, 18, -54, ... [ a = 2 , r = -3 ]
Maka U6 = 2(-3)⁶-¹ = 2(-3)⁵ = 2(-243) = -486
Soal Nomor 9
Pola barisan geometri
4, 12, 36, ...
Suku Pertama = 4 , Rasio = 12/4 = 3
Maka rumus pola : Un = 4(3ⁿ-¹)
Un = a( rⁿ-¹ ) = 4(3ⁿ-¹)
Soal Nomor 10
U1 = 5 [ x = 1 , Ux = 5 ]
U3 = 45 [ y = 3 , Uy = 45 ]
Rasio
r = ( ³-¹ )√(45/5)
r = ²√9
r = √9
[ r = 3 ]
Hasil / Result :
Pola barisan geometri
5, 15, 45, 135, ...
Suku Pertama = 5 , Rasio = 3
Maka rumus pola : Un = 5(3ⁿ-¹)
Jika Un = 1.215
5(3ⁿ-¹) = 1.215
3ⁿ-¹ = 1.215
3ⁿ-¹ = 243
3ⁿ-¹ = 3⁵
3ⁿ = 3⁵+¹
3ⁿ = 3⁶
[ n = 6 ] => 1.215 adalah suku ke - 6
Semoga bisa membantu